Browsing by Author "Macedo, Tice R. A."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Electroanalytical determination of codeine in pharmaceutical preparationsPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, Fernanda; Macedo, Tice R. A.; Oliveira-Brett, A. M.A square wave voltammetric (SWV) method and a flow injection analysis systemwi th electrochemical detection (FIA-EC) using a glassy carbon electrode were evaluated for the determination of codeine in pharmaceutical preparations. The interference of several compounds, such as acetaminophen,guaiacol, parabens, ephedrine, acetylsalicylic acid and caffeine, that usually appear associated with codeine pharmaceutical preparations was studied. It was verified that these electroanalytical methods could not be used with acetaminophen present in the formulations and that with guaiacol, parabens or ephedrine present the use of the FIA-EC system was impracticable. A detection limit of 5 µmol L- 1 and a linear calibration range from 40 to 140 µmol L- 1 was obtained with the SWV method. For the flow injection analysis procedure a linear calibration range was obtained from 7 to 50 µmol L- 1 with a detection limit of 3 µmol L- 1 and the FIA-EC systemallowed a sampling rate of 115 samples per hour. The results obtained by the two methods, SWV and FIA-EC, were compared with those obtained using reference methods and demonstrated good agreement, with relative deviations lower than 4%.
- Electrochemical analysis of opiates—an overviewPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, Fernanda; Macedo, Tice R. A.; Oliveira-Brett, A. M.The analysis of opiates is of vital interest in drug abuse monitoring and research. This review presents a general overview of the electrochemical methods used for detection and quantification of opiates in a variety of matrices. Emphasis has been placed on the voltammetric methods used for study and determination of morphine, codeine, and heroin. Specific issues that need to be solved and better explained as well as future trends in the use of electrochemical methods in the examination of opiates are also discussed.
- Electrochemical determination of dihydrocodeine in pharmaceuticalsPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.Two analytical methods for the quality control of dihydrocodeine in commercial pharmaceutical formulations have been developed and compared with reference methods: a square wave voltammetric (SWV) method and a flow injection analysis system with electrochemical detection (FIA-EC). The electrochemical methods proposed were successfully applied to the determination of dihydrocodeine in pharmaceutical tablets and in oral solutions. These methods do not require any pretreatment of the samples, the formulation only being dissolved in a suitable electrolyte. Validation of the methods showed it to be precise, accurate and linear over the concentration range of analysis. The automatic procedure based on a flow injection analysis manifold allows a sampling rate of 115 determinations per hour.
- Flow injection electrochemical determination of apomorphinePublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, Fernanda; Macedo, Tice R. A.; Oliveira-Brett, A. M.Few analytical methods are currently available for determination of apomorphine, the active substance of a new oral formulation used in the treatment of erectile dysfunction. In this way a flow injection electrochemical method (FIA-EC) was developed for its quantification and applied to pharmaceutical dosage forms. Based in previous findings regarding the stability of apomorphine in borate buffer and after optimization of several analytical parameters a single channel flow injection manifold was set up that enables the determination of this drug over the concentration range of 3 to 16 µmol L-1 with a detection limit of 0.5 µmol L-1 at a sampling rateof 90 h-1. The simplicity and rapidity of the FIA-EC method used, its reproducibility and sensitivity make it suitable for quality control of pharmaceutical preparations of apomorphine intended for clinical use and research.
- New insights into the oxidation pathways of apomorphinePublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, Fernanda; Macedo, Tice R. A.; Oliveira-Brett, A. M.A detailed study of the oxidative behaviour of apomorphine in aqueous media is reported. Resorting to the synthesis of apomorphine derivatives it was possible to identify all the anodic oxidation peaks of apomorphine, which are related to the oxidation of the catechol and tertiary amine groups. These findings were revealed to be important since they could lead to a better understanding of the biological interactions of apomorphine and gain insight into its metabolic pathways. During the voltammetric studies, it was also found that apomorphine forms a complex with borate through the catechol group leading to an increase of its oxidation potential. This property could be very useful with regard to the stabilization of apomorphine solutions since it could drastically reduce its autoxidation.
- Oxidative behaviour of apomorphine and its metabolitesPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.The metabolism of apomorphine is quite complex due to interactions with proteins and other tissue components that affect its pharmacokinetic profile. The electrochemical oxidation mechanism of apomorphine and of some synthesised apomorphine derivatives was studied. It was found to be related to the reaction of o-diphenol and tertiary amine groups and strongly dependent on pH.
- Voltammetric oxidation of drugs of abuse I. Morphine and metabolitesPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.A detailed study of the electrochemical oxidative behavior of morphine in aqueous solution is reported. Through the synthesis of several metabolites and derivatives, pseudomorphine, morphine N-oxide, normorphine, dihydromorphine and 2-(N,N-dimethylaminomethyl)morphine, and their voltammetric study it was possible to identify the oxidation peaks for morphine. The anodic waves are related with the oxidation of phenolic and tertiary amine groups. It is also possible to verify that a poorly defined peak observable during morphine oxidation is not a consequence of further oxidation of pseudomorphine but due to formation of a dimer during phenolic group oxidation. The results obtained and especially those regarding the formation of a new polymer based on a C O coupling could be useful for clarifying the discoloration phenomenon occurring during storage of morphine solutions as well as leading to a better understanding of its oxidative metabolic pathways.
- Voltammetric oxidation of drugs of abuse II. Codeine and metabolitesPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.The oxidation of codeine on glassy carbon electrodes has been studied in detail using differential pulse voltammetry. The results obtained using a glassy carbon electrode clearly show a much more complex oxidation mechanism than that previously reported when platinum and gold electrodes were used. To clarify the codeine oxidative profile, several metabolites and analogues of this alkaloid, codeine N-oxide, norcodeine, dihydrocodeine, acetylcodeine and 6- chlorodesoxycodeine, were synthesized and studied. It was deduced that the anodic waves observed in codeine oxidation are related to the presence of methoxy, hydroxy and tertiary amine groups. Due to the similarity of potentials at which these oxidative processes take place, at some pHs an overlap of peaks occurs and only one anodic wave is observed.
- Voltammetric oxidation of drugs of abuse III. Heroin and metabolitesPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.The oxidative behavior of heroin in aqueous solution is reported. In order to identify its oxidation peaks, several metabolites, 6-monoacetylmorphine, 3-monoacetylmorphine and norheroin, were synthesized and their electrochemical behavior studied using differential pulse voltammetry. The anodic waves observed for heroin correspond to the oxidation of the tertiary amine group and its follow-up product (secondary amine), and to the oxidation of the phenolic group obtained from hydrolysis, at alkaline pHs, of the 3-acetyl group. The results enabled a new oxidative mechanism for heroin to be proposed in which a secondary amine, norheroin, and an aldehyde are obtained. The voltammetric behavior of 6-monoacetylmorphine and morphine was found to be similar demonstrating that the presence of an acetyl substituent on the 6-hydroxy group does not have a relevant influence on the peak potential of the wave resulting from oxidation of the 3-phenolic group.
