ESS - CF - Artigos
Permanent URI for this collection
Browse
Browsing ESS - CF - Artigos by Title
Now showing 1 - 10 of 68
Results Per Page
Sort Options
- Abnormal immunoreactivity to serotonin in cerebellar purkinje cells after neonatal cocaine exposurePublication . Summavielle, Teresa; Alves, Cecília J.; Monteiro, Pedro; Tavares, Maria AméliaNeonatal cocaine is known to affect the developing serotonergic system in many brain structures, including the cerebellum. Changes in the cerebellar Purkinje cells after drug exposure are well documented and result in impairment of movement and other cerebellar disorders such as ataxia. These cells have a major postnatal developmental pattern; therefore, neonatal exposure to cocaine is likely to affect them. In this work, male and female Wistar rats were injected with 15 mg of cocaine hydrochloride/kg body weight/day, subcutaneously, in two daily doses, from postnatal day 1 (PND1) to PND29. Controls were given 0.9% of saline. On PND14, PND21, and PND30, rats were transcardially perfused, and brains removed and cryoprotected. Coronal sections from the cerebellum were processed for immunocytochemistry of cells containing serotonin (5-hydroxytryptamine, or 5-HT). At the same postnatal age, rats from at least three different litters were sacrificed by decapitation, and brains were dissected for determination of 5-HT in the cerebellum by high-performance liquid chromatography with electrochemical detection. Upon the expected distribution of immunoreactivity to 5-HT, an abnormal immunoreactivity to 5-HT was observed in the Purkinje cells of six cocaineexposed animals, but not in control animals. Also, levels of cerebellar 5-HT in cocaine-exposed rats were significantly increased on PND21. These results, together with previously reported observations of altered patterns of motor behavior, indicate that neonatal cocaine exposure affects the serotonergic cerebellar system, altering the standard development of Purkinje cells and possibly compromising the motor function.
- Acetyl-L-Carnitine prevents methamphetamine-induced structural damage on endothelial cells via ILK-related MMP-9 activityPublication . Summavielle, Teresa; Fernandes, S.; Salta, S.; Bravo, J.; Silva, A.P.Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. Acetyl- L-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underlying its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METH-triggered MMPs’ activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.
- Acute effects of physical exercise with microcurrent in the adipose tissue of the abdominal region: A randomized controlled trialPublication . Noites, Andreia; Moreira, Anabela; Melo, Cristina; Faria, Miriam; Vilarinho, Rui; Freitas, Carla; Monteiro, Pedro; Carvalho, Paulo; Adubeiro, Nuno; Sousa, Maria; Santos, Rubim; Nogueira, LuisaIncreased abdominal fat and sedentary lifestyles contribute to cardiovascular disease risk. Low-intensity electrical current (microcurrent) on the abdominal region, associated with physical exercise, appears to be an innovative method to increase the lipolytic rate of abdominal adipocytes, in order to reduce abdominal fat. This study aimed to analyze the acute effects of microcurrent associated with an aerobic exercise program in healthy subjects in lipolysis. A double-blinded, randomized controlled trial was developed and conducted in a higher education school. Eighty-three healthy subjects, aged between 18 and 30 years old and with a 18.5 to 29.9 kg/m2 body mass index were randomly assigned either to an experimental or to a placebo group. Subjects received a trans-abdominal microcurrent stimulation for 40 min with (experimental group) or without (placebo group) electrical current, followed by a single aerobic exercise session (60 min at 45–55% VO2max intensity). Lipolytic activity (serum glycerol), abdominal fat (waist circumference, abdominal skinfold, ultrasonography), and serum lipid profile (serum triglyceride, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol) were evaluated in all subjects. Physical activity (International Physical Activity Questionnaire) and dietary intake (food-frequency questionnaire) questionnaires were applied. After the intervention, lipolytic rate was significantly higher (p = 0.003) in the experimental group (mean = 0.15) than in the placebo group (mean = 0.09). Glycerol results showed a statistically significant increase between baseline and after the intervention for both experimental group (p = 0.001) and the placebo group (p = 0.001). Combined use of microcurrent and physical aerobic exercise had an acute effect enhancing lipolytic rate comparing to exercise alone, in young healthy subjects.
- Alendronic Acid as Ionic Liquid: New Perspective on OsteosarcomaPublication . Teixeira, Sónia; Santos, Miguel M.; Fernandes, Maria H.; Costa-Rodrigues, Joao; Branco, Luís C.Herein the quantitative synthesis of eight new mono- and dianionic Organic Salts and Ionic Liquids (OSILs) from alendronic acid (ALN) is reported by following two distinct sustainable and straightforward methodologies, according to the type of cation. The prepared ALN-OSILs were characterized by spectroscopic techniques and their solubility in water and biological fluids was determined. An evaluation of the toxicity towards human healthy cells and also human breast, lung and bone (osteosarcoma) cell lines was performed. Globally, it was observed that the monoanionic OSILs showed lower toxicity than the corresponding dianionic structures to all cell types. The highest cytotoxic effect was observed in OSILs containing a [C2OHMIM] cation, in particular [C2OHMIM][ALN]. The latter showed an improvement in IC50 values of ca. three orders of magnitude for the lung and bone cancer cell lines as well as fibroblasts in comparison with ALN. The development of OSILs with high cytotoxicity effect towards the tested cancer cell types, and containing an anti-resorbing molecule such as ALN may represent a promising strategy for the development of new pharmacological tools to be used in those pathological conditions.
- Altered environmental perception by parental stress and depression vulnerability: impact on mothers and offspringPublication . Alves, Renata L.; Portugal, Camila C.; Lopes, Igor M.; Oliveira, Pedro; Alves, Cecília J.; Barbosa, Fernando; Summavielle, Teresa; Magalhães, Ana; Summavielle, TeresaDepressive mothers often find the mother-child interaction to be challenging. Parental stress may further impair mother-child attachment, which may increase the risk of negative developmental consequences. We used rats with different vulnerability to depression (Wistar and Kyoto) to investigate the impact of stress (maternal separationMS) on maternal behaviour and adolescent offspring cognition. MS in Kyoto dams increased pup-contact, resulting in higher oxytocin levels and lower anxiety-like behaviour after weaning, while worsening their adolescent offspring cognitive behaviour. Whereas MS in Wistar dams elicited higher quality of pup-directed behaviour, increasing Brain-Derived Neurotrophic Factor (BDNF) in the offspring, which seems to have prevented a negative impact on cognition. Hypothalamic oxytocin seems to impact the salience of the social environment cues (as negative for Kyoto) leading to different coping strategies. Our findings highlight the importance of contextual and individual factors in the understanding of the oxytocin role in modulating maternal behaviour and stress regulatory processes.
- Antiproliferative organic salts derived from betulinic acid: Disclosure of an ionic liquid selective against lung and liver cancer cellsPublication . Silva, Ana Teresa; Cerqueira, Maria João; Prudêncio, Cristina; Fernandes, Maria Helena; Costa-Rodrigues, João; Teixeira, Cátia; Gomes, Paula; Ferraz, RicardoIn the last few years, we have been witnessing an increasing interest in ionic liquids (ILs) and organic salts, given their potential applications in biological and pharmaceutical sciences. We report the synthesis and in vitro evaluation of novel organic salts combining betulinate, known for its anticancer properties, with antimalarial drugs, primaquine, chloroquine, and mepacrine, and also with the trihexyltetradecylphosphonium ([P6,6,6,14]) cation. The salts were screened for their in vitro activity against tumor lines HepG2 (liver), MG63 (osteosarcoma), T47D (breast), A459 (lung), and RKO (colon), and also on normal human fibroblasts. All betulinates prepared displayed antiproliferative properties, with the trihexyltetradecylphosphonium betulinate standing out for its higher selectivity. This unprecedented disclosure of a betulinic acid (BA)-derived IL with selective antitumor activity constitutes a relevant first step toward development of novel anticancer therapies based on BA-derived IL.
- Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetaminePublication . Canedo, Teresa; Portugal, Camila Cabral; Socodato, Renato; Almeida, Tiago Oliveira; Terceiro, Ana Filipa; Bravo, Joana; Silva, Ana Isabel; Magalhães, João Duarte; Guerra-Gomes, Sónia; Oliveira, João Filipe; Sousa, Nuno; Magalhães, Ana; Relvas, João Bettencourt; Summavielle, TeresaMethamphetamine (Meth) is a powerful illicit psychostimulant, widely used for recreational purposes. Besides disrupting the monoaminergic system and promoting oxidative brain damage, Meth also causes neuroinflammation, contributing to synaptic dysfunction and behavioral deficits. Aberrant activation of microglia, the largest myeloid cell population in the brain, is a common feature in neurological disorders triggered by neuroinflammation. In this study, we investigated the mechanisms underlying the aberrant activation of microglia elicited by Meth in the adult mouse brain. We found that binge Meth exposure caused microgliosis and disrupted risk assessment behavior (a feature that usually occurs in individuals who abuse Meth), both of which required astrocyte-to-microglia crosstalk. Mechanistically, Meth triggered a detrimental increase of glutamate exocytosis from astrocytes (in a process dependent on TNF production and calcium mobilization), promoting microglial expansion and reactivity. Ablating TNF production, or suppressing astrocytic calcium mobilization, prevented Meth-elicited microglia reactivity and re-established risk assessment behavior as tested by elevated plus maze (EPM). Overall, our data indicate that glial crosstalk is critical to relay alterations caused by acute Meth exposure.
- Bioactivity of ionic liquids based on valproate in SH-SY5Y human neuroblastoma cell linePublication . Dias, Ana Rita; Ferraz, Ricardo; Costa-Rodrigues, João; Santos, Andreia F. M.; Jacinto, Manuel L.; Prudêncio, Cristina; Noronha, João Paulo; Branco, Luís C.; Petrovsk, ŽeljkoThe search for alternative and effective therapies to fight cancer is one of the main goals of the pharmaceutical industry. Recently, ionic liquids (ILs) have emerged as potential therapeutic agents with antitumor properties. The goal of this study was to synthesize and evaluate the bioactivity of different ILs coupled with the active pharmaceutical ingredient (API) valproate (VPA) as an antitumor agent. The toxicity of the prepared ionic liquids was evaluated by the MTT cell metabolic assay in human neuroblastoma SH-SY5Y and human primary Gingival Fibroblast (GF) cell lines, in which they showed inhibitory effects during the study period. In addition, low cytotoxicity against GF cell lines was observed, suggesting that these compounds are not toxic to human cell lines. [C2OHDMiM][VPA] demonstrated an outstanding antitumor activity against SH-SY5Y and lower activity against the non-neoplastic GF line. The herein assessed compounds played an important role in the modulation of the signaling pathways involved in the cellular behavior. This work also highlights the potential of these ILs-API as possible antitumor agents.
- Bisphosphonates and cancer: a relationship beyond the antiresorptive effectsPublication . Teixeira, Sónia; Branco, Luís; Fernandes, Maria H.; Costa-Rodrigues, JoãoBisphosphonates (BPs) are stable analogues of the Inorganic Pyrophosphate (PPi), an endogenous regulator of bone mineralization, which can resist the hydrolysis in the gastrointestinal tract. Their conformation allows targeting the bone as a result of their three-dimensional structure, which makes them primary agents against osteoclast-mediated bone loss. They are used in many bone pathological conditions, like bone metastasis, because of its ability to modulate bone metabolism into a less favorable place to cancer cell growth, through the inhibition of osteoclastogenesis and bone resorption. This review is focused on the mechanisms of action through which BPs affect the cellular activity and survival, mainly on their antitumoral effects. In conclusion, BPs are considered the primary therapy for skeletal disorders due to its high affinity for bone, but now they are also considered as potential antitumor agents due to its ability to induce tumor cell apoptosis, inhibition of cell adhesion, invasion and proliferation, modulation of the immune system to target and eliminate cancer cells as well as affect the angiogenic mechanisms. Like any other drug, they also have some adverse effects, but the most common, the acute phase reaction, can be minimized with the intake of calcium and vitamin D.
- Bone injury and repair trigger central and peripheral NPY Neuronal PathwaysPublication . Alves, Cecília J.; Alencastre, Inês S.; Neto, Estrela; Ribas, João; Ferreira, Sofia; Vasconcelos, Daniel M.; Sousa, Daniela M.; Summavielle, Teresa; Lamghari, MeriemBone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY) neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG) and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair.