Browsing by Author "Borges, F."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
- Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samplesPublication . Garrido, Jorge; Borges, F.; Brett, C. M. A.; Garrido, E. ManuelaDetection and quantification of cocaine is a key tool in fields such as police apprehensions and the fight against drug trafficking. Thus, a simple, fast and inexpensive electroanalytical methodology for the determination of cocaine in seized street samples has been developed, employing linear sweep voltammetry. The method is based on the use of a glassy carbon (GC) electrode modified by a combination of multi-walled carbon nanotubes (MWCNT) with β- cyclodextrin (β-CD) incorporated in a polyaniline film. The proposed method shows high reproducibility, repeatability and specificity. Under optimal conditions, the β-CD/ MWCNT-modified GC electrode gives a detection limit of 1.02 μM cocaine. The results obtained are in good agreement with those obtained by the high-performance liquid chromatography reference method. The new methodology proposed has excellent potential as the basis of a portable analytical sensor for on-site screening of cocaine in seized street samples.
- Development of electrochemical methods for determination of tramadol - analytical application to pharmaceutical dosage formsPublication . Garrido, E. Manuela; Garrido, Jorge; Borges, F.; Delerue-Matos, CristinaA square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.
- Electroanalytical determination of oxadiazon and characterization of its base-catalyzed ring-opening productsPublication . Garrido, E. Manuela; Lima, J. L. F. C.; Delerue-Matos, Cristina; Borges, F.; Oliveira-Brett, A. M.The electrochemical behavior of the hydrolysis products of oxadiazon was studied by cyclic and square-wave voltammetry using a glassy carbon electrode. Maximum currents were obtained at pH 12.8 in an aqueous electrolyte solution containing 30% ethanol and the current did not decrease with time showing that there was little adsorption of the reaction products on the electrode surface. The hydrolysis products of oxadiazon were identi®ed, after isolation and puri®cation, as 1-trimethylacetyl-2-(2,4-dichloro-5-isopropoxyphenyl)-2-ethoxycarbonylhydrazine (Oxa1) and 1-trimethylacetyl-2-(2,4-dichloro-5-isopropoxyphenyl) hydrazine (Oxa2) with redox potentials 0.6Vand 70.1V (vs. Ag=AgCl), respectively. Based on the electrochemical behavior of 1-trimethylacetyl-2-(2,4-dichloro-5-isopropoxyphenyl) hydrazine (Oxa2) a simple electroanalytical procedure was developed for the determination of oxadiazon in commercial products used in the treatment of rice crops in Portugal that contain oxadiazon as the active ingredient. The detection limit was 161074 M, the mean content and relative standard deviation obtained for seven samples of two different commercial products by the electrochemical method were 28.4 0.8% (Ronstar) and 1.9 0.2% (Ronstar GR), and the recoveries were 100.3 5.4% and 101.1 5.3 %, respectively.
- Electrochemical and spectroscopic studies of the oxidation mechanism of the herbicide propanilPublication . Garrido, E. Manuela; Lima, J. L. F. C.; Delerue-Matos, Cristina; Borges, F.; Silva, A. M. S.; Piedade, J. A. P.; Oliveira-Brett, A. M.Electrochemical oxidation of propanil in deuterated solutions was studied by cyclic, differential pulse, and square wave voltammetry using a glassy carbon microelectrode. The oxidation of propanil in deuterated acid solutions occurs at the nitrogen atom of the amide at a potential of +1.15 V vs Ag/ AgCl. It was also found that, under the experimental conditions used, protonation at the oxygen atom of propanil occurs, leading to the appearance of another species in solution which oxidizes at +0.60 V. The anodic peak found at +0.79 V vs Ag/AgCl in deuterated basic solutions is related to the presence of an anionic species in which a negative charge is on the nitrogen atom. The electrochemical data were confirmed by the identification of all the species formed in acidic and basic deuterated solutions by means of NMR spectroscopy. The results are supported by electrochemical and spectroscopic studies of acetanilide in deuterated solutions.
- Electrochemical determination of dihydrocodeine in pharmaceuticalsPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.Two analytical methods for the quality control of dihydrocodeine in commercial pharmaceutical formulations have been developed and compared with reference methods: a square wave voltammetric (SWV) method and a flow injection analysis system with electrochemical detection (FIA-EC). The electrochemical methods proposed were successfully applied to the determination of dihydrocodeine in pharmaceutical tablets and in oral solutions. These methods do not require any pretreatment of the samples, the formulation only being dissolved in a suitable electrolyte. Validation of the methods showed it to be precise, accurate and linear over the concentration range of analysis. The automatic procedure based on a flow injection analysis manifold allows a sampling rate of 115 determinations per hour.
- Electrochemical oxidation of propanil and related N-substituted amidesPublication . Garrido, E. Manuela; Lima, J. L. F. C.; Delerue-Matos, Cristina; Borges, F.; Silva, A. M. S.; Oliveira-Brett, A. M.The electrochemical behaviour of propanil and related N-substituted amides (acetanilide and N,N-diphenylacetamide) was studied by cyclic and square wave voltammetry using a glassy carbon electrode. Propanil has been found to have chemical stability under the established analytical conditions and showed an oxidation peak at +1.27V versus Ag/AgCl at pH 7.5. N,N-diphenylacetamide has a higher oxidation potential than the other compounds of +1.49V versus Ag/AgCl. Acetanilide oxidation occurred at a potential similar to that of propanil, +1.24V versus Ag/AgCl. These results are in agreement with the substitution pattern of the nitrogen atom of the amide. A degradation product of propanil, 3,4-dichloroaniline (DCA), was also studied, and showed an oxidation peak at +0.66V versus Ag/AgCl. A simple and specific quantitative electroanalytical method is described for the analysis of propanil in commercial products that contain propanil as the active ingredient, used in the treatment of rice crops in Portugal.
- Electrochemical sensor for simultaneous determination of herbicide MCPA and its metabolite 4-chloro-2-methylphenol. Application to photodegradation environmental monitoringPublication . Rahemi, V.; Garrido, J. M. P. J.; Borges, F.; Brett, C. M. A.; Garrido, E. M. P. J.The development and application of a polyaniline/carbon nanotube (CNT) cyclodextrin matrix (PANI-β-CD/MWCNT)-based electrochemical sensor for the quantitative determination of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) and its main transformation product 4-chloro-2-methylphenol in natural waters are described. A simple cyclic voltammetry-based electrochemical methodology, in phosphate buffer solution at pH 6.0, was used to develop a method to determine both MCPA and 4-chloro-2-methylphenol, without any previous extraction or derivatization steps. A linear concentration range (10 to 50 μmol L−1) and detection limits of 1.1 and 1.9 μmol L−1, respectively, were achieved using optimized cyclic voltammetric parameters. The proposed method was successfully applied to the determination of MCPA and 4-chloro-2-methylphenol in natural water samples with satisfactory recoveries (94 to 107 %) and in good agreement with the results obtained by an established high-performance liquid chromatography technique, no significant differences being found between the methods. Interferences from ionic species and other herbicides used for broad-leaf weed control were shown to be small. The newly developed methodology was also successfully applied to MCPA photodegradation environmental studies.
- Enhanced host–guest electrochemical recognition of herbicide MCPA using a b-cyclodextrin carbon nanotube sensorPublication . Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J.An electrochemical sensor for the determination of the chlorophenoxy herbicide MCPA has been developed, based on a combination of multi-walled carbon nanotubes with incorporated b-cyclodextrin and a polyaniline film modified glassy carbon electrode. The proposed molecular host–guest recogni-tion based sensor has a high electrochemical sensitivity for the determination of MCPA. The electrochemical behaviour of MCPA at the chemically modified electrode was investigated in detail by cyclic voltammetry. The results indicate that the b-CD/MWCNT modified glassy carbon electrode exhibits efficient electrocatalytic oxidation of MCPA with high sensitivity, stability and lifetime. The analytical characteristics of this film were used for the quantitative determination of MCPA in natural waters. Cyclic voltammetry in phosphate buffer solution at pH 6.0, allowed the development of a method to determine MCPA, without any previous steps of extraction, clean-up, or derivatization, in the range of 10–100 mmol L-1, with a detection limit of 0.99 mmol L-1 in water. The results were statistically compared with those obtained through an established high-performance liquid chromato-graphy technique, no significant differences having been found between the two methods.
- Oxidative behaviour of apomorphine and its metabolitesPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.The metabolism of apomorphine is quite complex due to interactions with proteins and other tissue components that affect its pharmacokinetic profile. The electrochemical oxidation mechanism of apomorphine and of some synthesised apomorphine derivatives was studied. It was found to be related to the reaction of o-diphenol and tertiary amine groups and strongly dependent on pH.
- Voltammetric oxidation of drugs of abuse I. Morphine and metabolitesPublication . Garrido, Jorge; Delerue-Matos, Cristina; Borges, F.; Macedo, Tice R. A.; Oliveira-Brett, A. M.A detailed study of the electrochemical oxidative behavior of morphine in aqueous solution is reported. Through the synthesis of several metabolites and derivatives, pseudomorphine, morphine N-oxide, normorphine, dihydromorphine and 2-(N,N-dimethylaminomethyl)morphine, and their voltammetric study it was possible to identify the oxidation peaks for morphine. The anodic waves are related with the oxidation of phenolic and tertiary amine groups. It is also possible to verify that a poorly defined peak observable during morphine oxidation is not a consequence of further oxidation of pseudomorphine but due to formation of a dimer during phenolic group oxidation. The results obtained and especially those regarding the formation of a new polymer based on a C O coupling could be useful for clarifying the discoloration phenomenon occurring during storage of morphine solutions as well as leading to a better understanding of its oxidative metabolic pathways.