Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 67
  • Smart Plastic Antibody Material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to Myoglobin detection
    Publication . Moreira, Felismina T. C.; Sharma, Sanjiv; Dutra, Rosa A.F.; Noronha, João P. C.; Cass, Anthony E. G.; Sales, M. Goreti F.
    This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.
  • Protein-responsive polymers for point-of-care detection of cardiac biomarker
    Publication . Moreira, Felismina T. C.; Sharma, Sanjiv; Dutra, Rosa A.F.; Noronha, João P. C.; Cass, Anthony E. G.; Sales, M. Goreti F.
    This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.
  • Plastic Antibody of Polypyrrole/Multiwall Carbon Nanotubes on Screen-Printed Electrodes for Cystatin C Detection
    Publication . Gomes, Rui S.; Gomez-Rodríguez, Blanca Azucena; Fernandes, Ruben; Sales, Goreti; Moreira, Felismina; Dutra, Rosa F.
    This work reports the design of a novel plastic antibody for cystatin C (Cys-C), an acute kidney injury biomarker, and its application in point-of-care (PoC) testing. The synthetic antibody was obtained by tailoring a molecularly imprinted polymer (MIP) on a carbon screen-printed electrode (SPE). The MIP was obtained by electropolymerizing pyrrole (Py) with carboxylated Py (Py-COOH) in the presence of Cys-C and multiwall carbon nanotubes (MWCNTs). Cys-C was removed from the molecularly imprinted poly(Py) matrix (MPPy) by urea treatment. As a control, a non-imprinted poly(Py) matrix (NPPy) was obtained by the same procedure, but without Cys-C. The assembly of the MIP material was evaluated in situ by Raman spectroscopy and the binding ability of Cys-C was evaluated by the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) electrochemical techniques. The MIP sensor responses were measured by the DPV anodic peaks obtained in the presence of ferro/ferricyanide. The peak currents decreased linearly from 0.5 to 20.0 ng/mL of Cys-C at each 20 min successive incubation and a limit of detection below 0.5 ng/mL was obtained at pH 6.0. The MPPy/SPE was used to analyze Cys-C in spiked serum samples, showing recoveries <3%. This device showed promising features in terms of simplicity, cost and sensitivity for acute kidney injury diagnosis at the point of care.
  • Novel optical PVC probes for on-site detection/determination of fluoroquinolones in a solid/liquid interface: Application to the determination of Norfloxacin in aquaculture water
    Publication . Silva, Tâmara I. B.; Moreira, Felismina T. C.; Truta, Liliana A.A.N.A.; Sales, M. Goreti F.
    A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.
  • Haemoglobin smart plastic antibody material tailored with charged binding sites on silica nanoparticles: its application as an ionophore in potentiometric transduction
    Publication . Tavares, Ana P. M.; Moreira, Felismina T. C.; Sales, M. Goreti F.
    This work uses surface imprinting to design a novel smart plastic antibodymaterial (SPAM) for Haemoglobin (Hb). Charged binding sites are described here for the first time to tailor plastic antibody nanostructures for a large size protein such as Hb. Its application to design small, portable and low cost potentiometric devices is presented. The SPAM material was obtained by linking Hb to silica nanoparticles and allowing its ionic interaction with charged vinyl monomers. A neutral polymeric matrix was created around these and the imprinted protein removed. Additional materials were designed in parallel acting as a control: a neutral imprinted material (NSPAM), obtained by removing the charged monomers from the procedure, and the Non-Imprinted (NI) versions of SPAM and NSPAM by removing the template. SEM analysis confirmed the surface modification of the silica nanoparticles. All materials were mixed with PVC/plasticizer and applied as selective membranes in potentiometric transduction. Electromotive force (emf) variations were detected only for selective membranes having a lipophilic anionic additive in the membrane. The presence of Hb inside these membranes was evident and confirmed by FTIR, optical microscopy and Raman spectroscopy. The best performance was found for SPAM-based selective membranes with an anionic lipophilic additive, at pH 5. The limits of detection were 43.8 mg mL 1 and linear responses were obtained down to 83.8 mg mL 1, with an average cationic slope of +40 mV per decade. Good selectivity was also observed against other coexisting biomolecules. The analytical application was conducted successfully, showing accurate and precise results.
  • Transdermal electrochemical sensing: Combining microneedles with molecularly imprinted polymers for point-of-care testing
    Publication . Oliveira, Daniela; Correia, Bárbara P.; Sharma, Sanjiv; Moreira, Felismina T.C.
    Biomarkers from interstitial skin fluid (ISF) complement conventional biofluids for point-of-care testing and real-time monitoring. In this study, we propose a new approach that combines microneedle technology with molecularly imprinted polymers to improve transdermal electrochemical sensing. The molecularly imprinted polymer, which acts like a plastic antibody, is easy to synthesis and scalable, offering a low detection limit and rapid measurement (20 minutes). It detects IL -6, a proinflammatory cytokine associated with several clinical conditions, including neurological disease and pneumonia caused by SARS-CoV-2. The transdermal sensors successfully identified IL -6 in simulated skin ISF at very low concentrations (1 pg/mL). This breakthrough enables affordable and bloodless testing, facilitating access to point-of-care testing worldwide. The integration of molecularly imprinted polymers and microneedle arrays is very promising for efficient transdermal electrochemical sensing that could find application in various clinical scenarios.
  • Sulphonamide-imprinted sol–gel materials as ionophores in potentiometric transduction
    Publication . Almeida, Sofia A. A.; Moreira, Felismina T. C.; Heitor, A.M.; Montenegro, M.C.B.S.M.; Aguilar, G.; Sales, M. Goreti F.
    This work proposes different kind of solid-contact graphite-based electrodes for the selective determination of sulphonamides (SPHs) in pharmaceuticals, biological fluids and aquaculture waters. Sulfadiazine (SDZ) and sulfamethoxazole (SMX) were selected for this purpose for being the most representative compounds of this group. The template molecules were imprinted in sol–gel (ISG) and the resulting material was used as detecting element. This was made by employing it as either a sensing layer or an ionophore of PVC-based membranes and subsequent potentiometric transduction, a strategy never reported before. The corresponding non-imprinted sol–gel (NISG) membranes were used as blank. The effect of plasticizer and kind/charge of ionic lipophilic additive was also studied. The best performance in terms of slope, linearity ranges and signal reproducibility and repeatability was achieved by PVC membranes including a high dielectric constant plasticizer and 15 mg of ISG particles. The corresponding average slope was −51.4 and −52.4 mV/decade, linear responses were 9.0 × 10−6 and 1.7 × 10−5 M, and limits of detection were 0.74 and 1.3 μg/mL for SDZ and for SMX, respectively. Good selectivity with log Kpot < −0.3 was observed for carbonate, chloride, fluoride, hydrogenocarbonate, nitrate, nitrite, phosphate, cyanide, sulfate, borate, persulphate, citrate, tartrate, salicylate, tetracycline, ciprofloxacin, sulphamerazine, sulphatiazole, dopamine, glucose, galactose, cysteine and creatinine. The best sensors were successfully applied to the analysis of real samples with relative errors ranging from −6.8 to + 3.7%.
  • Plastic antibody for the diagnosis of acute myocardial infarction
    Publication . Ricardo, Jacinta; Martins, Gabriela; Moreira, Felismina T.C.
    (Introduction) Novel application Plastic Antibody that responds to a cardiac biomarker, myoglobin (Myo). Imprint stage with electropolymerization of ortho-phenylenediamine (OPD) in the presence of Myo. Template removal from polymeric matrix digested by trypsin. The films acted as biomimetic artificial antibodies and were fabricated on a screen-printed platinium (Pt) electrode (SPE) modified with electroactive Prussian blue nanocubes (PBNCs) to take a step towards disposable sensors for point-of-care applications. The devices showed linear responses to Myo in SWV assays up to 0.01 and 10000 ng/mL.
  • Biomimetic sensors of molecularly-imprinted polymers for chlorpromazine determination
    Publication . Moreira, Felismina T. C.; Sales, M. Goreti F.
    A new man-tailored biomimetic sensor for Chlorpromazine host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted within methacrylic acid, 2-vinyl pyridine and 2-acrylamido-2-methyl-1-propanesulfonic acid based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. Slopes and detection limits ranged 51–67 mV/decade and 0.46–3.9 μg/mL, respectively, in steady state conditions. Sensors were independent from the pH of test solutions within 2.0–5.5. Good selectivity was observed towards oxytetracycline, doxytetracycline, ciprofloxacin, enrofloxacin, nalidixic acid, sulfadiazine, trimethoprim, glycine, hydroxylamine, cysteine and creatinine. Analytical features in flowing media were evaluated on a double-channel manifold, with a carrier solution of 5.0 × 10−2 mol/L phosphate buffer. Near-Nernstian response was observed over the concentration range 1.0 × 10−4 to 1.0 × 10−2 mol/L. Average slopes were about 48 mV/decade. The sensors were successfully applied to field monitoring of CPZ in fish samples, offering the advantages of simplicity, accuracy, automation feasibility and applicability to complex samples.
  • Electrochemical Aptasensor for the Detection of the Key Virulence Factor YadA of Yersinia enterocolitica
    Publication . Sande, Maria Georgina; Ferreira, Débora; Rodrigues, Joana; Melo, Luís; Linke, Dirk; Silva, Carla J.; Moreira, Felismina; Sales, Goreti; Rodrigues, Lígia
    New point-of-care (POC) diagnosis of bacterial infections are imperative to overcome the deficiencies of conventional methods, such as culture and molecular methods. In this study, we identified new aptamers that bind to the virulence factor Yersinia adhesin A (YadA) of Yersinia enterocolitica using cell-systematic evolution of ligands by exponential enrichment (cell-SELEX). Escherichia coli expressing YadA on the cell surface was used as a target cell. After eight cycles of selection, the final aptamer pool was sequenced by high throughput sequencing using the Illumina Novaseq platform. The sequencing data, analyzed using the Geneious software, was aligned, filtered and demultiplexed to obtain the key nucleotides possibly involved in the target binding. The most promising aptamer candidate, Apt1, bound specifically to YadA with a dissociation constant (Kd) of 11 nM. Apt1 was used to develop a simple electrochemical biosensor with a two-step, label-free design towards the detection of YadA. The sensor surface modifications and its ability to bind successfully and stably to YadA were confirmed by cyclic voltammetry, impedance spectroscopy and square wave voltammetry. The biosensor enabled the detection of YadA in a linear range between 7.0 × 104 and 7.0 × 107 CFU mL−1 and showed a square correlation coefficient >0.99. The standard deviation and the limit of detection was ~2.5% and 7.0 × 104 CFU mL−1, respectively. Overall, the results suggest that this novel biosensor incorporating Apt1 can potentially be used as a sensitive POC detection system to aid the diagnosis of Y. enterocolitica infections. Furthermore, this simple yet innovative approach could be replicated to select aptamers for other (bacterial) targets and to develop the corresponding biosensors for their detection.