Browsing by Author "Costa, Paulo C."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Assessment of a Formulation Containing a Castanea sativa Shells Extract on Skin Face Parameters: In Vivo EvaluationPublication . Silva, Ana Margarida; Costa, Paulo C.; Delerue-Matos, Cristina; Rodrigues, FranciscaIn the last years, the demand for new eco-friendly ingredients has increased on the cosmetic market. Consumers are more aware of sustainable principles and, simultaneously, more conscious regarding the skin aging process. Chestnut (Castanea sativa) shells are a food by-product produced in high quantities in Europe. This waste has been described as a rich source of phenolic compounds with skin biological effects, such as antioxidant, antiradical, and anti-inflammatory activities. Despite the huge number of assays reporting the richness of chestnut shell extracts in bioactive compounds as well as the development of cosmetic formulations containing these extracts, no in vivo assays have assessed their clinical efficacy in human volunteers. The aim of this study was to evaluate the effect on skin face parameters of a formulation containing a chestnut shell extract in human volunteers (n = 22) who applied the product twice per day, for 56 days. For that, biophysical techniques, including Corneometer®, Cutometer®, and PrimosPremium, were employed, allowing the quantification of skin hydration and firmness, as well as of wrinkles’ depth and volume and wrinkles’ skin roughness. The results demonstrated that the formulation led to a slight decrease in roughness and wrinkles’ depth, although no significant differences with respect to a placebo were observed. In addition, a clear improvement of skin hydration was achieved (t0 = 54.00 Arbitrary Units (A.U.) and t56 = 58.62 A.U.). In contrast to the placebo, the active formulation increased skin firmness up to 31.76% in 50.00% of the volunteers, but without significant differences with respect to the placebo, probably due to the short period of treatment. A long-term use of the product is recommended to possibly observe significant differences in all parameters.
- Formulation, Characterization, and Cytotoxicity Evaluation of Lactoferrin Functionalized Lipid Nanoparticles for Riluzole Delivery to the BrainPublication . Teixeira, Maria Inês; Lopes, Carla Martins; Gonçalves, Hugo; Catita, José; Silva, Ana Margarida; Rodrigues, Francisca; Amaral, Maria Helena; Costa, Paulo C.Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a very poor prognosis. Its treatment is hindered by a lack of new therapeutic alternatives and the existence of the blood–brain barrier (BBB), which restricts the access of drugs commonly used in ALS, such as riluzole, to the brain. To overcome these limitations and increase brain targeting, riluzole-loaded nanostructured lipid carriers (NLC) were prepared and functionalized with lactoferrin (Lf), facilitating transport across the BBB by interacting with Lf receptors expressed in the brain endothelium. NLC were characterized with respect to their physicochemical properties (size, zeta potential, polydispersity index) as well as their stability, encapsulation efficiency, morphology, in vitro release profile, and biocompatibility. Moreover, crystallinity and melting behavior were assessed by DSC and PXRD. Nanoparticles exhibited initial mean diameters between 180 and 220 nm and a polydispersity index below 0.3, indicating a narrow size distribution. NLC remained stable over at least 3 months. Riluzole encapsulation efficiency was very high, around 94–98%. FTIR and protein quantification studies confirmed the conjugation of Lf on the surface of the nanocarriers, with TEM images showing that the functionalized NLC presented a smooth surface and uniform spherical shape. An MTT assay revealed that the nanocarriers developed in this study did not cause a substantial reduction in the viability of NSC-34 and hCMEC/D3 cells at a riluzole concentration up to 10 μM, being therefore biocompatible. The results suggest that Lf-functionalized NLC are a suitable and promising delivery system to target riluzole to the brain
- Influence of temperature on the subcritical water extraction of Actinidia arguta leaves: A screening of pro-healthy compoundsPublication . Silva, Ana Margarida; Luís, Ana Sofia; Moreira, Manuela M.; Ferraz, Ricardo; Brezo-Borjan, Tanja; Svarc-Gajic, Jaroslava; Costa, Paulo C.; Delerue-Matos, Cristina; Rodrigues, FranciscaActinidia arguta is a species disseminated in Europe and classified by the Chinese Herbal Medicine as a medicinal plant. The fruit (kiwiberry) has been extensively exploited for multiple purposes, while leaves where discarded. The objective of this study was to evaluate the optimal Subcritical Water Extraction (SWE) temperature (110 °C - 160 °C) of antioxidants and polyphenols from A. arguta leaves. The optimal temperature of extraction was 123 °C, revealing the highest phenolic and flavonoid contents and good scavenging efficiencies against HOCl (IC50 = 17.06 μg/mL) and O2●- (IC50 = 335.2 μg/mL), without toxicity on intestinal cells. The phenolic profile was characterized by high amounts of phenolic acids (e.g., gallic acids), flavanols (catechin) and flavonols (e.g., quercetin-3-O-galactoside). This work allows to conclude that SWE can be a useful extraction technique for the recovery of polyphenolics from A. arguta leaves.
- Influence of temperature on the subcritical water extraction of Actinidia arguta leaves: A screening of pro-healthy compoundsPublication . Silva, Ana Margarida; Luís, Ana Sofia; Moreira, Manuela M.; Ferraz, Ricardo; Brezo-Borjan, Tanja; Švarc-Gajić, Jaroslava; Costa, Paulo C.; Delerue-Matos, Cristina; Rodrigues, FranciscaActinidia arguta is a species disseminated in Europe and classified by the Chinese Herbal Medicine as a medicinal plant. The fruit (kiwiberry) has been extensively exploited for multiple purposes, while leaves where discarded. The objective of this study was to evaluate the optimal Subcritical Water Extraction (SWE) temperature (110 °C - 160 °C) of antioxidants and polyphenols from A. arguta leaves. The optimal temperature of extraction was 123 °C, revealing the highest phenolic and flavonoid contents and good scavenging efficiencies against HOCl (IC50 = 17.06 μg/mL) and O2●- (IC50 = 335.2 μg/mL), without toxicity on intestinal cells. The phenolic profile was characterized by high amounts of phenolic acids (e.g., gallic acids), flavanols (catechin) and flavonols (e.g., quercetin-3-O-galactoside). This work allows to conclude that SWE can be a useful extraction technique for the recovery of polyphenolics from A. arguta leaves
- Insights into the 3D In Vitro Permeability and In Vivo Antioxidant Protective Effects of Kiwiberry Leaf Extract: A Step Forward to Human Nutraceutical UsePublication . Silva, Ana Margarida; Almeida, Andreia; Dall’Acqua, Stefano; Loschi, Francesca; Sarmento, Bruno; Costa, Paulo C.; Delerue-Matos, Cristina; Rodrigues, FranciscaActinidia arguta (Siebold & Zucc.) Planch. ex Miq. (kiwiberry) leaves are a source of phenolic compounds with pro-health biological effects, such as antioxidant and anti-inflammatory activities. Despite the huge number of studies reporting the composition of A. arguta leaves, no in vitro or in vivo studies explore its potential use as nutraceutical ingredient based on these activities. Therefore, this study aims to characterize the safety profile of kiwiberry leaf extracts using in vitro and in vivo approaches through the assessment of intestinal cell viability (Caco-2 and HT29-MTX), 3D intestinal permeation, and, most important, the redox markers, biochemical profile and liver and kidney function effects after the animal assays. Briefly, wistar rats were orally treated for 7 days with kiwiberry leaf extracts (50 and 75 mg/kg bw), water (negative control), or vitamin C (positive control). The cell viability was above 90% at 1000 μg/mL for both cells. Coumaroyl quinic acid and rutin achieved a permeation higher than 25% in the 3D intestinal model. The animal studies confirmed the extracts’ ability to increase superoxide dismutase, glutathione peroxidase, and catalase content in animals’ livers and kidneys while simultaneously decreasing the triglycerides content. This study highlighted the antioxidant capacity of kiwiberry leaf extracts, ensuring their efficacy and safety as a nutraceutical ingredient
- New Perspectives on the Sustainable Employment of Chestnut Shells as Active Ingredient against Oral Mucositis: A First ScreeningPublication . Ferreira, Ana Sofia; Silva, Ana Margarida; Pinto, Diana; Moreira, Manuela M.; Ferraz, Ricardo; Švarc-Gajić, Jaroslava; Costa, Paulo C.; Delerue-Matos, Cristina; Rodrigues, FranciscaOral mucositis (OM), a common side effect of oncological treatment, is an oral mucosal disorder characterized by painful ulcerations and increased risk of infection. The use of natural antioxidants to suppress the redox imbalance responsible for the OM condition has emerged as an interesting approach to prevent/treat OM. This study aims to explore the chestnut (Castana sativa) shells as potential active ingredient against OM. Therefore, chestnut shells were extracted at different temperatures (110–180 °C) by Subcritical Water Extraction (SWE), aiming to recover antioxidants. The extracts were also evaluated against microorganisms present in the oral cavity as well as on human oral cell lines (TR146 and HSC3). The highest phenolic content was obtained with the extraction temperature of 110 °C, exhibiting the best antioxidant/antiradical activities and scavenging efficiencies against HOCl (IC50 = 4.47 μg/mL) and ROO• (0.73 μmol TE/mg DW). High concentrations of phenolic acids (e.g., gallic and protocatechuic acids) and flavanoids (catechin, epicatechin and rutin) characterized the phenolic profile. The antimicrobial activity against several oral microorganisms present in the oral cavity during OM, such as Streptococcus, Staphylococcus, Enterococcus, and Escherichia, was demonstrated. Finally, the effects on HSC3 and TR146 cell lines revealed that the extract prepared at 110 °C had the lowest IC50 (1325.03 and 468.15 µg/mL, respectively). This study highlights the potential effects of chestnut shells on OM
- Strontium-rich injectable hybrid system for bone regenerationPublication . Neves, Nuno; Campos, Bruno B.; Almeida, Isabel F.; Costa, Paulo C.; Cabral, Abel Trigo; Barbosa, Mário A.; Castro Ribeiro, Maria Cristina DeCurrent challenges in the development of scaffolds for bone regeneration include the engineering of materials that can withstand normal dynamic physiological mechanical stresses exerted on the bone and provide a matrix capable of supporting cellmigration and tissue ingrowth. The objective of the present workwas to develop and characterize a hybrid polymer–ceramic injectable systemthat consists of an alginatematrix crosslinked in situ in the presence of strontium(Sr), incorporating a ceramic reinforcement in the form of Sr-richmicrospheres. The incorporation of Sr in the microspheres and in the vehicle relies on the growing evidence that Sr has beneficial effects in bone remodeling and in the treatment of osteopenic disorders and osteoporosis. Sr-rich porous hydroxyapatite microspheres with a uniform size and a mean diameter of 555 μmwere prepared, and their compression strength and friability tested. A 3.5% (w/v) ultrapure sodium alginate solution was used as the vehicle and its in situ gelation was promoted by the addition of calcium (Ca) or Sr carbonate and Glucone-δ-lactone. Gelation times varied with temperature and crosslinking agent, being slower for Sr than for Ca, but adequate for injection in both cases. Injectability was evaluated using a device employed in vertebroplasty surgical procedures, coupled to a texture analyzer in compression mode. Compositions with 35%w ofmicrospheres presented the best compromise between injectability and compression strength of the system, the force required to extrude it being lower than 100 N.Micro CT analysis revealed a homogeneous distribution of themicrospheres inside the vehicle, and a mean inter-microspheres space of 220 μm. DMA results showed that elastic behavior of the hybrid is dominant over the viscous one and that the higher storage modulus was obtained for the 3.5%Alg–35%Sr-HAp-Sr formulation.
- The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitutePublication . Coelho, Catarina C.; Padrão, Tatiana; Costa, Laura; Pinto, Marta T .; Costa, Paulo C.; Domingues, Valentina F.; Quadros, Paulo A.; Monteiro, Fernando J.; Sousa, Susana R.Bone graft infections are serious complications in orthopaedics and the growing resistance to antibiotics is increasing the need for antibacterial strategies. The use of magnesium oxide (MgO) is an interesting alternative since it possesses broad-spectrum antibacterial activity. Additionally, magnesium ions also play a role in bone regeneration, which makes MgO more appealing than other metal oxides. Therefore, a bone substitute composed of hydroxyapatite and MgO (HAp/MgO) spherical granules was developed using different sintering heat-treatment cycles to optimize its features. Depending on the sintering temperature, HAp/MgO spherical granules exhibited distinct surface topographies, mechanical strength and degradation profiles, that influenced the in vitro antibacterial activity and cytocompatibility. A proper balance between antibacterial activity and cytocompatibility was achieved with HAp/MgO spherical granules sintered at 1100 ºC. The presence of MgO in these granules was able to significantly reduce bacterial proliferation and simultaneously provide a suitable environment for osteoblasts growth. The angiogenic and inflammation potentials were also assessed using the in vivo chicken embryo chorioallantoic membrane (CAM) model and the spherical granules containing MgO stimulated angiogenesis without increasing inflammation. The outcomes of this study evidence a dual effect of MgO for bone regenerative applications making this material a promising antibacterial bone substitute.
- Valorization of Kiwiberry Leaves Recovered by Ultrasound-Assisted Extraction for Skin Application: A Response Surface Methodology ApproachPublication . Silva, Ana Margarida; Pinto, Diana; Moreira, Manuela M.; Costa, Paulo C.; Delerue-Matos, Cristina; Rodrigues, FranciscaThis study aims to evaluate the optimal ultrasound-assisted extraction (UAE) conditions of antioxidants polyphenols from Actinidia arguta (Siebold & Zucc.) Planch. Ex Miq. (kiwiberry) leaves using a response surface methodology (RSM). The effects of solid:liquid ratio (2.5–10.0% w/v), time (20–60 min), and intensity (30–70 W/m2) on the total phenolic content (TPC) and antioxidant/antiradical activities were investigated. The optimal UAE conditions were achieved using a solid:liquid ratio of 10% (w/v) and an ultrasonic intensity of 30 W/m2 for 31.11 min. The results demonstrated that the optimal extract showed a high TPC (97.50 mg of gallic acid equivalents (GAE)/g dw) and antioxidant/antiradical activity (IC50 = 249.46 µg/mL for ABTS assay; IC50 = 547.34 µg/mL for DPPH assay; 1440.13 µmol of ferrous sulfate equivalents (FSE)/g dw for ferric reducing antioxidant power (FRAP)) as well as a good capacity to scavenge superoxide and hypochlorous acid (respectively, IC50 = 220.13 μg/mL and IC50 =10.26 μg/mL), which may be related with the 28 phenolic compounds quantified. The in vitro cell assay demonstrated that the optimal extract did not decrease the keratinocytes’ (HaCaT) viability, while the fibroblasts’ (HFF-1) viability was greater than 70.63% (1000 µg/mL). This study emphasizes the great potential of kiwiberry leaves extracted by UAE for skin application.
- Vine-Canes as a Source of Value-Added Compounds for Cosmetic FormulationsPublication . Moreira, Manuela M.; Rodrigues, Francisca; Dorosh, Olena; Pinto, Diana; Costa, Paulo C.; Švarc-Gajić, Jaroslava; Delerue-Matos, CristinaThe majority of works about vine-canes are focused on the evaluation of their chemical composition and antioxidant potential. To the best of our knowledge, the possible applications of produced extracts in cosmetic formulations have never been explored. The aim of the present study was to evaluate the antioxidant properties of vine-canes subcritical water extracts for use as active ingredients in the cosmetic industry. For that, the phenolic content and antioxidant activity of six vine-cane varieties, namely Alvarinho and Loureiro from the Minho region and Touriga Nacional and Tinta Roriz (TR) from both the Douro and Dão regions, were evaluated through spectrophotometric and chromatographic methods. All extracts presented similar antioxidant activity and the highest phenolic content was reported for TR variety from the Douro region (33.7 ± 1.9 mg GAE/g dw). The capacity of vine-cane extracts to capture reactive oxygen species superoxide (O2∙−) was also studied, with the highest IC50 value being obtained for Loureiro variety (56.68 ± 2.60 µg/mL). Furthermore, no adverse effects on HaCaT and HFF-1 dermal cell lines in concentrations below 100 and 1000 μg/mL, respectively, were determined. Finally, Loureiro vine-cane extract was incorporated into a topical formulation, and physical and microbiological properties were within expected values, demonstrating that vine-canes extracts can be successfully incorporated in cosmetic products.