Browsing by Issue Date, starting with "2022-01-13"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Biofortified Diets Containing Algae and Selenised Yeast: Effects on Growth Performance, Nutrient Utilization, and Tissue Composition of Gilthead Seabream (Sparus aurata)Publication . Ferreira, Mariana; Ribeiro, Pedro C.; Ribeiro, Laura; Barata, Marisa; Domingues, Valentina F.; Sousa, Sara; Soares, Cristina; Marques, Alexandra; Pousão-Ferreira, Pedro; Dias, Jorge; Castro, L. Filipe C.; Marques, António; Nunes, Maria L.; Valente, Luisa M. P.Efforts have been made to find natural, highly nutritious alternatives to replace fish meal (FM) and fish oil (FO), which can simultaneously promote fish health and improve the nutritional quality of filets for human consumption. This study evaluated the impact of biofortified diets containing microalgae (as replacement for FM and FO), macroalgae (as natural source of iodine) and selenised yeast (organic source of selenium) on gilthead seabream growth, nutrient utilization, tissue composition and gene expression. A control diet (CTRL) with 15% FM and 5.5% FO was compared with three experimental diets (AD1, AD2, and AD3), where a microalgae blend (Chlorella sp., Tetraselmis sp., and DHA-rich Schizochytrium sp.) replaced 33% of FM. Diet AD1 contained 20% less FO. Diets were supplemented with Laminaria digitata (0.4% AD1 and AD2; 0.8% AD3) and selenised yeast (0.02% AD1 and AD2; 0.04% AD3). After feeding the experimental diets for 12 weeks, growth was similar in fish fed AD1, AD2, and CTRL, indicating that microalgae meal can partially replace both FM and FO in diets for seabream. But AD3 suppressed fish growth, suggesting that L. digitata and selenised yeast supplementation should be kept under 0.8 and 0.04%, respectively. Despite lower lipid intake and decreased PUFAs bioavailability in fish fed AD3, compared to CTRL, hepatic elovl5 was upregulated resulting in a significant increase of muscle EPA + DHA. Indeed, filets of fish fed AD2 and AD3 provided the highest EPA + DHA contents (0.7 g 100 g–1), that are well above the minimum recommended values for human consumption. Fish consuming the AD diets had a higher retention and gain of selenium, while iodine gain remained similar among diets. Upregulation of selenoproteins (gpx1, selk, and dio2) was observed in liver of fish fed AD1, but diets had limited impact on fish antioxidant status. Overall, results indicate that the tested microalgae are good sources of protein and lipids, with their LC-PUFAs being effectively accumulated in seabream muscle. Selenised yeast is a good fortification vehicle to increase selenium levels in fish, but efforts should be placed to find new strategies to fortify fish in iodine
- Formulation, Characterization, and Cytotoxicity Evaluation of Lactoferrin Functionalized Lipid Nanoparticles for Riluzole Delivery to the BrainPublication . Teixeira, Maria Inês; Lopes, Carla Martins; Gonçalves, Hugo; Catita, José; Silva, Ana Margarida; Rodrigues, Francisca; Amaral, Maria Helena; Costa, Paulo C.Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a very poor prognosis. Its treatment is hindered by a lack of new therapeutic alternatives and the existence of the blood–brain barrier (BBB), which restricts the access of drugs commonly used in ALS, such as riluzole, to the brain. To overcome these limitations and increase brain targeting, riluzole-loaded nanostructured lipid carriers (NLC) were prepared and functionalized with lactoferrin (Lf), facilitating transport across the BBB by interacting with Lf receptors expressed in the brain endothelium. NLC were characterized with respect to their physicochemical properties (size, zeta potential, polydispersity index) as well as their stability, encapsulation efficiency, morphology, in vitro release profile, and biocompatibility. Moreover, crystallinity and melting behavior were assessed by DSC and PXRD. Nanoparticles exhibited initial mean diameters between 180 and 220 nm and a polydispersity index below 0.3, indicating a narrow size distribution. NLC remained stable over at least 3 months. Riluzole encapsulation efficiency was very high, around 94–98%. FTIR and protein quantification studies confirmed the conjugation of Lf on the surface of the nanocarriers, with TEM images showing that the functionalized NLC presented a smooth surface and uniform spherical shape. An MTT assay revealed that the nanocarriers developed in this study did not cause a substantial reduction in the viability of NSC-34 and hCMEC/D3 cells at a riluzole concentration up to 10 μM, being therefore biocompatible. The results suggest that Lf-functionalized NLC are a suitable and promising delivery system to target riluzole to the brain