Loading...
23 results
Search Results
Now showing 1 - 10 of 23
- A scalable and efficient approach for obtaining measurements in CAN-Based control systemsPublication . Andersson, Björn; Pereira, Nuno; Elmenreich, Wilfried; Tovar, Eduardo; Pacheco, Filipe; Cruz, NunoThe availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.
- A microscope for the data centerPublication . Pereira, Nuno; Tennina, Stefano; Loureiro, João; Severino, Ricardo; Saraiva, Bruno; Santos, Manuel; Pacheco, Filipe; Tovar, EduardoNowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
- Networked embedded systems for active flow control in aircraftPublication . Tovar, Eduardo; Pereira, Nuno; Bate, Iain; Indrusiak, Leandro; Penna, Sérgio; Negrão, José; Viana, Júlio C.; Philipp, François; Mayer, Dirk; Heras, José; Pacheco, Filipe; Loureiro, JoãoAerodynamic drag is known to be one of the factors contributing more to increased aircraft fuel consumption. The primary source of skin friction drag during flight is the boundary layer separation. This is the layer of air moving smoothly in the immediate vicinity of the aircraft. In this paper we discuss a cyber-physical system approach able of performing an efficient suppression of the turbulent flow by using a dense sensing deployment to detect the low pressure region and a similarly dense deployment of actuators to manage the turbulent flow. With this concept, only the actuators in the vicinity of a separation layer are activated, minimizing power consumption and also the induced drag.
- Characterizing the timing behaviour of power-line communication by means of simulationPublication . Marques, Luís; Pacheco, Filipe; Pinho, Luís MiguelAlthough power-line communication (PLC) is not a new technology, its use to support communication with timing requirements is still the focus of ongoing research. Recently, a new infrastructure was presented, intended for communication using power lines from a central location to geographically dispersed nodes using inexpensive devices. This new infrastructure uses a two-level hierarchical power-line system, together with an IP-based network. Within this infrastructure, in order to provide end-toend communication through the two levels of the powerline system, it is necessary to fully understand the behaviour of the underlying network layers. The masterslave behaviour of the PLC MAC, together with the inherent dynamic topology of power-line networks are important issues that must be fully characterised. Therefore, in this paper we present a simulation model which is being used to study and characterise the behaviour of power-line communication.
- User-interface technologies for the industrial environment: towards the cyber-factoryPublication . Pacheco, Filipe; Tovar, EduardoIn the past few years the so-called gadgets like cellular phones, personal data assistants and digital cameras are more widespread even with less technological aware users. However, for several reasons, the factory-floor itself seems to be hermetic to this changes ... After the fieldbus revolution, the factory-floor has seen an increased use of more and more powerful programmable logic controllers and user interfaces but the way they are used remains almost the same. We believe that new user-computer interaction techniques including multimedia and augmented rcaliry combined with now affordable technologies like wearable computers and wireless networks can change the way the factory personal works together with the roachines and the information system on the factory-floor. This new age is already starting with innovative uses of communication networks on the factory-floor either using "standard" networks or enhancing industrial networks with multimedia and wireless capabilities.
- Highly scalable aggregate computations in cyber-physical systems: physical environment meets communication protocolsPublication . Tovar, Eduardo; Andersson, Björn; Pereira, Nuno; Alves, Mário; Prabh, K. Shashi; Pacheco, FilipeIn this paper, we focus on large-scale and dense Cyber- Physical Systems, and discuss methods that tightly integrate communication and computing with the underlying physical environment. We present Physical Dynamic Priority Dominance ((PD)2) protocol that exemplifies a key mechanism to devise low time-complexity communication protocols for large-scale networked sensor systems. We show that using this mechanism, one can compute aggregate quantities such as the maximum or minimum of sensor readings in a time-complexity that is equivalent to essentially one message exchange. We also illustrate the use of this mechanism in a more complex task of computing the interpolation of smooth as well as non-smooth sensor data in very low timecomplexity.
- REMPLI discreet event simulation systemPublication . Marques, Luís; Pacheco, FilipeThis document presents the design choices on the simulation mechanism used to test the Tansport Layer implementation in the REMPLI project [www.rempli.org].
- Industrial multimedia over factory-floor networksPublication . Tovar, Eduardo; Vasques, Francisco; Pacheco, Filipe; Ferreira, LuísIn this paper we describe a real-time industrial communication network able to support both controlrelated and multimedia traffic. The industrial communication network is based on the PROFIBUS standard, with multimedia capabilities being provided by an adequate integration of TCP/IP protocols into the PROFIBUS stack. From the operational point of view the integration of TCP/IP into PROFIBUS is by itself a challenge, since the master-slave nature of the PROFIBUS MAC makes complex the implementation of the symmetry inherent to IP communications. From the timeliness point of view the challenge is two folded. On one hand the multimedia traffic should not interfere with the timing requirements of the "native" control-related PROFIBUS traffic (typically hard real-time). On the other hand multimedia traffic requires certain levels of quality-of-service to be attained. In this paper we provide a methodology that enables fulfilling the timing requirements for both types of traffic in these real-time industrial LAN. Moreover, we describe suitable algorithms for the scheduling support of concurrent multimedia streams.
- A framework for realistic real-time walkthroughs in a VR distributed environmentPublication . Pacheco, Filipe; Tovar, Eduardo; Hansson, H.; Altenbernd, PeterVirtual and augmented reality (VR/AR) are increasingly being used in various business scenarios and are important driving forces in technology development. However the usage of these technologies in the home environment is restricted due to several factors including lack of low-cost (from the client point of view) highperformance solutions. In this paper we present a general client/server rendering architecture based on Real-Time concepts, including support for a wide range of client platforms and applications. The idea of focusing on the real-time behaviour of all components involved in distributed IP-based VR scenarios is new and has not been addressed before, except for simple sub-solutions. This is considered as “the most significant problem with the IP environment” [1]. Thus, the most important contribution of this research will be the holistic approach, in which networking, end-systems and rendering aspects are integrated into a cost-effective infrastructure for building distributed real-time VR applications on IP-based networks.
- Queuing and routing in a hierarchical powerline communication systemPublication . Pacheco, Filipe; Pinho, Luís MiguelAlthough power-line communication (PLC) is not a new technology, its use to support data communication with timing requirements is still the focus of ongoing research. A new infrastructure intended for communication using power lines from a central location to dispersed nodes using inexpensive devices was presented recently. This new infrastructure uses a two-level hierarchical power-line system, together with an IP-based network. Due to the master-slave behaviour of the PLC medium access, together with the inherent dynamic topology of power-line networks, a mechanism to provide end-to-end communication through the two levels of the power-line system must be provided. In this paper we introduce the architecture of the PLC protocol layer that is being implemented for this end.
- «
- 1 (current)
- 2
- 3
- »
