Repository logo
 
Loading...
Profile Picture
Person

Maria Cristina Castro Freitas

Search Results

Now showing 1 - 7 of 7
  • Tracking a Major Egg Allergen to Assess Commercial Food Label Compliance: Towards a Simple and Fast Immunosensing Device
    Publication . Freitas, Maria; del Rio, Mariana; Nouws, Henri; Delerue-Matos, Cristina
    An amperometric immunosensor was developed for the analysis of the major egg-white allergen ovotransferrin (Gal d 3) in commercial food products because the (accidental) intake, skin contact with, and/or inhalation of eggs can lead to severe disorders in allergic individuals. Employing a sandwich-type immunosensing strategy, screen-printed carbon electrodes (SPCE) were biomodified with anti-Gal d 3 (capture) antibodies, and the allergen’s detection was achieved with anti-Gal d 3 antibodies labelled with horseradish peroxidase (HRP). The 3,3′,5,5′-tetramethylbenzidine (TMB)/H2O2 reaction with HRP was used to obtain the electrochemical (amperometric) signal. An attractive assay time of 30 min and a remarkable analytical performance was achieved. The quantification range was established between 55 and 1000 ng·mL−1, with a limit of detection of 16 ng·mL−1. The developed method demonstrated good precision (Vx0 = 5.5%) and provided precise results (CV < 6%). The sensor also detected extremely low amounts (down to 0.010%) of egg. The analysis of seven raw and/or cooked egg and egg-white samples indicated that food processing influences the amount of allergen. Furthermore, to assure the compliance of product labelling with EU legislation, 25 commercial food ingredients/products were analysed. The accuracy of the results was confirmed through an ELISA assay. The stability of the ready-to-use sensing surface for 20 days allows a reduction of the reagents’ volumes and cost.
  • Tracking Arachis hypogaea Allergen in Pre-Packaged Foodstuff: A Nanodiamond-Based Electrochemical Biosensing Approach
    Publication . Freitas, Maria; Carvalho, André; Nouws, Henri; Delerue-Matos, Cristina
    The present work reports a nanodiamond-based voltammetric immunosensing platform for the analysis of a food allergen (Ara h 1) present in peanuts (Arachis hypogaea). The possibility of the usage of nanodiamonds (d = 11.2 ± 0.9 nm) on screen-printed carbon electrodes (SPCE/ND) in a single-use two-monoclonal antibody sandwich assay was studied. An enhanced electroactive area (~18%) was obtained and the biomolecule binding ability was improved when the 3D carbon-based nanomaterial was used. The antibody-antigen interaction was recognized through the combination of alkaline phosphatase with 3-indoxyl phosphate and silver ions. Linear Sweep Voltammetry (LSV) was applied for fast signal acquisition and scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) support the voltammetric approach and confirm the presence of silver particles on the electrode surface. The proposed immunosensor provided a low limit of detection (0.78 ng·mL−1) and highly precise (RSD < 7.5%) and accurate results. Quantification of Ara h 1 in commercial foodstuffs (e.g., crackers, cookies, protein bars) that refer to the presence of peanuts (even traces) on the product label was successfully achieved. The obtained data were in accordance with recovery results (peanut addition, %) and the foodstuff label. Products with the preventive indication “may contain traces” revealed the presence of peanuts lower than 0.1% (m/m). The method’s results were validated by comparison with an enzyme-linked immunosorbent assay. This allows confident information about the presence of allergens (even at trace levels) that leads to profitable conditions for both industry and consumers.
  • Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries
    Publication . Fernandes, Virgínia Cruz; Freitas, Maria; Pacheco, João; Oliveira, José Maria; Domingues, Valentina; Delerue-Matos, Cristina
    Magnetic nanoparticles (MNPs) with different sizes and characteristics were synthesized to be used as a QuEChERS sorbents for the determination of seven organophosphorus pesticides (OPPs) in strawberries by gas chromatography analysis with flame photometric and mass spectrometry detection. To achieve the optimum conditions of modified QuEChERS procedure several parameters affecting the cleanup efficiency including the amount of the sorbents and cleanup time were investigated. The results were compared with classical QuEChERS methodologies and the modified QuEChERS procedure using MNPs showed the better performance. Under the optimum conditions of the new methodology, three spiking levels (25, 50 and 100 μg kg-1) were evaluated in a strawberry sample. The results showed that the average recovery was 93% and the relative standard deviation was less than 12%. The enrichment factor ranged from 111 to 145%. The good linearity with coefficients of determination of 0.9904-0.9991 was obtained over the range of 25-250 μg kg-1 for 7 OPPs. It was determined that the MNPs have an excellent function as sorbent when purified even using less amount of sorbents and the magnetic properties allowed non-use of the centrifugation in cleanup step. The new methodology was applied in strawberry samples from conventional and organic farming. The new sorbents were successfully applied for extraction and determination of OPPs in strawberries.
  • High-performance electrochemical immunomagnetic assay for breast cancer analysis
    Publication . Freitas, Maria; Nouws, Henri P. A.; Keating, Elisa; Delerue-Matos, Cristina
    Despite the evolution of targeted therapies in oncology, some challenges such as screening and early diagnosis of cancer-related biomarkers still remain. The analysis of the Human Epidermal growth factor Receptor 2 (HER2) in biological fluids provides essential information for effective treatments. In this work we report the development of an electrochemical immunomagnetic bioassay for the analysis of the extracellular domain of HER2 (HER2-ECD) in human serum and cancer cells. Biomodified carboxylic acid functionalized magnetic beads (COOH-MBs) were used as the capture probe and an antibody labelled with alkaline phosphatase (AP) as the signalling probe. In the presence of HER2-ECD a sandwich complex was formed on the MBs, which were magnetically attracted to the surface of a screen-printed carbon electrode (SPCE). After the addition of 3-indoxyl phosphate and silver ions, used as the enzymatic substrate, the immunological interaction was detected by linear sweep voltammetry. Two linear concentration ranges were established: one between 5.0 and 50 ng/mL and another between 50 and 100 ng/mL. The developed assay provided a clinically useful detection limit (2.8 ng/mL) and has an adequate precision (Vx0 < 5%). The assay provided accurate results and was selective towards the target biomarker. Additionally, CTCs were analysed in human serum and a detection limit of 3 cells/mL was achieved for the HER+ breast cancer cell line SK-BR-3.
  • Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor
    Publication . Pacheco, João; Rebelo, Patrícia; Freitas, Maria; Nouws, Henri; Delerue-Matos, Cristina
    The extracellular domain of the human epidermal growth factor receptor 2 (HER2-ECD) is a protein breast cancer biomarker. Its quantification in peripheral blood could provide an important contribution to diagnostics and patient follow-up. In this work an electrochemical molecularly imprinted polymer (MIP) sensor for the quantification of HER2-ECD was developed. The MIP was electropolymerized by cyclic voltammetry using a solution containing phenol and HER2-ECD on a screen-printed gold electrode (AuSPE). The sensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The analysis of HER2-ECD was performed by differential pulse voltammetry using ([Fe(CN)6]3−/4−as redox probe. The linear range was established in the concentration interval from 10 to 70 ng/mL HER2-ECD, with a limit of detection of 1.6 ng/L and a limit of quantification of 5.2 ng/mL. Through the analysis of other protein biomarkers, the MIP sensor was found to be selective. Furthermore, these proteins did not interfere in the analysis of the selected biomarker. The developed sensor was used for the analysis of spiked human serum samples, providing adequate recovery values and precise results. The outcomes of this study indicate that the developed MIP sensor could be useful in the non-invasive analysis of HER2-ECD in breast cancer patients.
  • Electrochemical Biosensing in Cancer Diagnostics and Follow-up
    Publication . Freitas, Maria; Nouws, Henri; Delerue-Matos, Cristina
    In cancer, screening and early detection are critical for the success of the patient's treatment and to increase the survival rate. The development of analytical tools for non‐invasive detection, through the analysis of cancer biomarkers, is imperative for disease diagnosis, treatment and follow‐up. Tumour biomarkers refer to substances or processes that, in clinical settings, are indicative of the presence of cancer in the body. These biomarkers can be detected using biosensors, that, because of their fast, accurate and point of care applicability, are prominent alternatives to the traditional methods. Moreover, the constant innovations in the biosensing field improve the determination of normal and/or elevated levels of tumour biomarkers in patients’ biological fluids (such as serum, plasma, whole blood, urine, etc.). Although several biomarkers (DNA, RNA, proteins, cells) are known, the detection of proteins and circulating tumour cells (CTCs) are the most commonly reported due to their approval as tumour biomarkers by the specialized entities and commonly accepted for diagnosis by medical and clinical teams. Therefore, electrochemical immunosensors and cytosensors are vastly described in this review, because of their fast, simple and accurate detection, the low sample volumes required, and the excellent limits of detection obtained. The biosensing strategies reported for the six most commonly diagnosed cancers (lung, breast, colorectal, prostate, liver and stomach) are summarized and the distinct phases of the sensors’ constructions (surface modification, antibody immobilization, immunochemical interactions, detection approach) and applications are discussed.
  • Food allergen control: Tropomyosin analysis through electrochemical immunosensing
    Publication . Torre, Ricarda; Freitas, Maria; Costa‐Rama, Estefanía; Nouws, Henri; Delerue-Matos, Cristina
    Regulations of the EU obliges the indication of the presence of allergens on food labels. This work reports the development of an electrochemical immunosensor to determine tropomyosin (TPM) – a major shellfish allergen – prevailing in the muscles of crustacean species. Two linear ranges between the signal and TPM concentration were obtained: between 2.5 and 20 ng mL−1 and between 30 and 200 ng mL−1, with a lowest limit of detection of 0.47 ng mL−1. The selectivity of the optimized immunoassay, tested with other food allergens (e.g., Cyp c 1, a fish allergen), assures the effective detection of TPM, enabling successful control of foodstuff labelling. Several (12) foods, containing high and low TPM concentrations and TPM-free samples, were analysed using the sensor. A conventional ELISA kit and recovery assays were used to evaluate the accuracy of the results.