Browsing by Author "Almeida, Luís"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
- An Analysis of the Two-Ray Propagation Model to Support Near-Surface Overwater Wireless Sensor Networks DesignPublication . Gutiérrez Gaitán, Miguel; Pinto, Luis; Santos, Pedro Miguel; Almeida, LuísIn this work, a thorough analysis based on the two-ray model in the presence of tides is performed. The study aims to provide a tool to guide the deployment of near-surface overwater wireless sensor networks, and thus improve its overall link quality regardless of the variations of the tides. We consider realistic parameters, such as the distance between the nodes and the tide-levels range taken from the mouth of the Douro river, Porto and the Seixal Bay, Lisbon. In future works, we will complement the theoretical analysis with network level simulations and an extended experimental campaign.
- Assessing short-range Shore-to-Shore (S2S) and Shore-to-Vessel (S2V) wifi communicationsPublication . D'Orey, Pedro; Gutiérrez Gaitán, Miguel; Santos, Pedro Miguel; Ribeiro, Manuel; Sousa, J. Borges de; Almeida, LuísWireless communications increasingly enable ubiquitous connectivity for a large number of nodes, applications and scenarios. One of the less explored scenarios are aquatic ecosystems, specially when enabled by near-shore and short-range communications. Overwater communications are impaired by a number of distinguishing dynamic factors, such as tides, waves or node mobility, that lead to a widely fluctuating and unpredictable channel. In this work, we empirically characterize near-shore, overwater channels at 2.4 GHz under realistic conditions, including tidal variations, and relatively short TX-RX separations. To this end, we conducted experiments in a coastal estuarine region and on a harbor to characterize Shore-to-Shore (S2S) and Shore-to-Vessel (S2V) communication channels, respectively, and to identify major factors impairing communication in such scenarios. The empirical results show that constructive/destructive interference patterns, varying reflecting surface, and node mobility (i.e. travel direction and particular maneuvers) have a relevant and noticeable impact on the received signal strength. Thus, a set of parameters should be simultaneously considered for improving the performance of communication systems supporting S2S and S2V links, namely tidal variations, reflection surface changes, antenna height, TX-RX alignment and TX-RX separation. The results useful provide insights into realistic S2S and S2V link design and operation.
- CAP: Context-Aware Programming for Cyber Physical SystemsPublication . Gaur, Shashank; Almeida, Luís; Tovar, Eduardo; Reddy, RadhaContext-awareness is a prominently desired feature in computing systems. Smartphones, smart cards or tags, wearables, sensor nodes, and many other devices enable a system to compute context for different users and environment. With ever increasing advances in hardware for such devices, the interactions with users are increasing every day. This enables the collection of a large amount of data about users, systems, and physical environment. With such data available to be leveraged, context-awareness will soon become a necessity. Such type of data collection happens most frequently in sensing applications enabled by wireless sensor network (WSN) devices. This paper discusses the concept of context for sensing applications, specifically related to Cyber Physical Systems (CPS). The paper highlights key aspects of context and its definition. This paper proposes, to the best of the author's knowledge, the first programming approach to build context-aware applications for WSN-based CPS. This paper provides a proof of concept for a framework to detect, manage and deploy context-aware applications.
- A Configuration Framework for Multi-level Preemption Schemes in Time Sensitive NetworkingPublication . Ojewale, Mubarak; Meumeu Yomsi, Patrick; Almeida, LuísTo reduce the latency of time-sensitive flows in Ethernet networks, the IEEE TSN Task Group introduced the IEEE 802.1Qbu Standard, which specifies a 1-level preemption scheme for IEEE 802.1 networks. Recently, serious limitations of this scheme w.r.t. flows responsiveness were exposed and the so-called multi-level preemption approach was proposed to address these drawbacks. As is the case with most, if not all, real-time and/or time-sensitive preemptive systems, an appropriate priority-to-flow assignment policy plays a central role in the resulting performance of both 1-level and multi-level preemption schemes to avoid the over-provisioning and/or the sub-optimal use of hardware resources. Yet on another front, the multi-level preemption scheme raises new configuration challenges. Specifically, the right number of preemption level(s) to enable for swift transmission of flows; and the flow-to-preemption-class assignment synthesis remain open problems. To the best of our knowledge, there is no prior work in the literature addressing these important challenges. In this work, we address these three challenges. We demonstrate the applicability of our proposed solution by using both synthetic and real-life use-cases. Our experimental results show that multi-level preemption schemes improve the schedulability of flows by over 12% as compared to a 1-level preemption scheme, and at a higher abstraction level, the proposed configuration framework improves the schedulability of flows by up to 6% as compared to the dominant Deadline Monotonic Priority Ordering.
- Empirical Evaluation of Short-Range WiFi Vessel-to-Shore Overwater CommunicationsPublication . d'Orey, Pedro; Gutiérrez Gaitán, Miguel; Santos, Pedro M.; Ribeiro, Manuel; Sousa, J. Borges de; Almeida, LuísUnmanned vehicles used in ocean science, defense operations and commercial activities collect large amounts of data that is further processed onshore. For real-time information exchange, the wireless link between the unmanned vehicle and onshore devices must be reliable. In this work, we empirically evaluate a WiFi link between an autonomous underwater vehicle on the surface and an onshore device under real-world conditions. This work allowed i) collecting a large-scale realistic dataset and ii) identifying major factors impairing communication in such scenarios. The TX-RX antenna alignment, the operation mode (manual vs automatic) and varying reflecting surface induced by AUV mobility lead to sudden changes (e.g. nulls) in the received signal strength that can be larger than 20 dB. This study provides useful insights to the design of robust vessel-to-shore short-range communications.
- Formation Control Driven by Cooperative Object TrackingPublication . Lima, Pedro; Ahmada, Aamir; Dias, André; Conceição, André; Moreira, António; Silva, Eduardo; Almeida, Luís; Oliveira, Luís; Nascimento, TiagoIn this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
- Impact of Platoon Size on the Performance of TDMA-Based MAC ProtocolsPublication . Aslam, Aqsa; Almeida, Luís; Santos, FredericoVehicular networks are a core component in Intelligent Transportation Systems (ITS) enabling communication among vehicles for collaborative applications. One example of such an application that may bring benefits in reducing travel time, fuel consumption and improving safety is platooning. This application coordinates a group of vehicles that travel together, doing automatic control of inter-distances and speeds [1]. A critical part of this application is the vehicle-to-vehicle (V2V) communication highlighting the importance of improving the channel quality. Existing ITS standards, namely WAVE (USA) and ITS-G5 (Europe), use IEEE 802.11p DSRC (Dedicated Short-Range Communication) [2] that relies on CSMA/CA distributed access arbitration. Despite the Collision Avoidance attribute collisions can still occur and the channel quality can degrade significantly in dense traffic environments.
- Improving WiFi communication with surface nodes at near-shore on tidal watersPublication . Gutiérrez Gaitán, Miguel; d'Orey, Pedro; Santos, Pedro Miguel; Ribeiro, Manuel; Pinto, Luis; Almeida, Luís; de Sousa, J. BorgesWireless radio links deployed in aquatic areas (e.g., sea, rivers, lakes, estuaries) are affected by the conductive properties of the water surface, strengthening signal reflections and increasing destructive interference. Recurrent natural phenomena (e.g. tides or waves) cause shifts in water levels further impairing propagation over water surfaces. In this work, we aim to mitigate the detrimental impact of tides on link quality by providing tailored link distance/height-design regions that minimize average path losses. We focus on line-of-sight (LOS) over-water links between onshore stations and different types of surface nodes, namely AUVs, buoys, or USVs, using 2.4 GHz and 5 GHz frequency bands. Analytical results targeting mission data transfer scenarios demonstrate that the proposed method outperforms, in both frequency bands, the common practice of placing (i) onshore antennas at the largest possible height and/or (ii) surface nodes at a short but arbitrary distance from the shore. A longer version of this summary was presented at IEEE/MTS OCEANS 2021.
- On the Two-Ray Model Analysis for Overwater Links with Tidal VariationsPublication . Gutiérrez Gaitán, Miguel; Pinto, Luis; Santos, Pedro Miguel; Almeida, LuísThis work explores the impact of antenna heights and polarization on overwater links during the cycle of tidal variations. We focus our attention on links of short-to-medium-range distances with antenna heights near-to-the-water-surface. The typical use-case for such a scenario is an overwater, water quality monitoring wireless sensor network. The radio propagation is simulated using a featured two-ray model that considers the relative permittivity of the water surface and the antenna polarization. The results show that the performance of overwater links may be better with lower antennas than higher antennas as well as with one polarization or the other, intuitively, during part of the tidal cycle.
- Position paper on time and event-triggered communication services in the context of e-manufacturingPublication . Tovar, Eduardo; Pinho, Luís Miguel; Almeida, LuísModern factories are complex systems where advances in networking and information technologies are opening new ways towards higher efficiency. Such move is being driven by market rules with ever-increasing competition levels, in search for faster time-to-market, improved process yield, non-stop operations, flexible manufacturing and tighter supply-chain coupling. All these aims present a common requirement, i.e. a realtime flow of information, from the plant-floor up to the management, maintenance, suppliers and clients, to support accurate monitoring and control of the factory. This stresses the importance achieved by the communication infrastructure in modern manufacturing industry. This paper presents the authors view concerning the current trends in modern factory communication systems. It addresses the problems of seamlessly integrating different information flows with diverse requirements, mainly in terms of timeliness. In this aspect, the debate between event-triggered and time-triggered communication is revisited as well as the joint support for both types of traffic. Finally, a view of where factory communication systems are moving to is also presented, showing the impact of open and widely available technologies.