Repository logo
 
Publication

A comparison of unsupervised methods based on dichotomous data to identify clusters of airways symptoms: latent class analysis and partitioning around medoids methods

dc.contributor.authorAmaral, Rita
dc.contributor.authorJacinto, Tiago
dc.contributor.authorPereira, Ana
dc.contributor.authorAlmeida, Rute
dc.contributor.authorFonseca, João
dc.date.accessioned2019-06-28T16:11:31Z
dc.date.available2019-06-28T16:11:31Z
dc.date.issued2018
dc.description.abstractLatent class analysis (LCA) and partitioning around medoids (PAM) are popular data-driven methods for partitioning objects based on dichotomous data, remaining not clear which is better for large epidemiological datasets. Hence, we compared these methods in the identification of clusters of subjects with airways symptoms, using a large population-based data from the U.S. National Health and Nutrition Examination Surveys (NHANES).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAmaral, R., Jacinto, T., Pereira, A., Almeida, R., & Fonseca, J. (2018). A comparison of unsupervised methods based on dichotomous data to identify clusters of airways symptoms: Latent class analysis and partitioning around medoids methods. European Respiratory Journal, 52(suppl 62). https://doi.org/10.1183/13993003.congress-2018.PA4429
dc.identifier.doi10.1183/13993003.congress-2018.PA4429pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/14168
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherEuropean Respiratory Societypt_PT
dc.relation.publisherversionhttps://erj.ersjournals.com/content/52/suppl_62/PA4429pt_PT
dc.subjectLatent class analysispt_PT
dc.subjectAirwayspt_PT
dc.titleA comparison of unsupervised methods based on dichotomous data to identify clusters of airways symptoms: latent class analysis and partitioning around medoids methodspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.startPagePA4429pt_PT
oaire.citation.titleEuropean Respiratory Journalpt_PT
person.familyNameAmaral
person.givenNameRita
person.identifierR-00H-83K
person.identifier.ciencia-id1A1E-751F-50F0
person.identifier.ciencia-idED1E-5481-48E1
person.identifier.orcid0000-0002-0233-830X
person.identifier.orcid0000-0002-7897-1101
person.identifier.ridE-5535-2017
person.identifier.scopus-author-id56067841600
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication790fdd33-acdb-4dfe-88dc-38538486c9b3
relation.isAuthorOfPublicationd8696cf3-a961-4d88-963a-cefd61572ae3
relation.isAuthorOfPublication.latestForDiscoveryd8696cf3-a961-4d88-963a-cefd61572ae3

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_RitaAmaral_2018.pdf
Size:
96.45 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: