Logo do repositório
 
Miniatura indisponível
Publicação

A comparison of unsupervised methods based on dichotomous data to identify clusters of airways symptoms: latent class analysis and partitioning around medoids methods

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
COM_RitaAmaral_2018.pdf96.45 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Latent class analysis (LCA) and partitioning around medoids (PAM) are popular data-driven methods for partitioning objects based on dichotomous data, remaining not clear which is better for large epidemiological datasets. Hence, we compared these methods in the identification of clusters of subjects with airways symptoms, using a large population-based data from the U.S. National Health and Nutrition Examination Surveys (NHANES).

Descrição

Palavras-chave

Latent class analysis Airways

Contexto Educativo

Citação

Amaral, R., Jacinto, T., Pereira, A., Almeida, R., & Fonseca, J. (2018). A comparison of unsupervised methods based on dichotomous data to identify clusters of airways symptoms: Latent class analysis and partitioning around medoids methods. European Respiratory Journal, 52(suppl 62). https://doi.org/10.1183/13993003.congress-2018.PA4429

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

European Respiratory Society

Licença CC

Métricas Alternativas