Loading...
42 results
Search Results
Now showing 1 - 10 of 42
- Agent based simulation for group formationPublication . Marreiros, Goreti; Santos, Ricardo; Ramos, Carlos; Neves, JoséGroup decision making plays an important role in today’s organisations. The impact of decision making is so high and complex, that rarely the decision making process is made just by one individual. The simulation of group decision making through a Multi-Agent System is a very interesting research topic. The purpose of this paper it to specify the actors involved in the simulation of a group decision, to present a model to the process of group formation and to describe the approach made to implement that model. In the group formation model it is considered the existence of incomplete and negative information, which was identified as crucial to make the simulation closer to the reality.
- Quality in Hospital Administrative DatabasesPublication . Freitas, Alberto; Gaspar, Juliano; Rocha, Nuno; Marreiros, Goreti; Costa-Pereira, AltamiroThe clinical content of administrative databases includes, among others, patient demographic characteristics, and codes for diagnoses and procedures. The data in these databases is standardized, clearly defined, readily available, less expensive than collected by other means, and normally covers hospitalizations in entire geographic areas. Although with some limitations, this data is often used to evaluate the quality of healthcare. Under these circumstances, the quality of the data, for instance, errors, or it completeness, is of central importance and should never be ignored. Both the minimization of data quality problems and a deep knowledge about this data (e.g., how to select a patient group) are important for users in order to trust and to correctly interpret results. In this paper we present, discuss and give some recommendations for some problems found in these administrative databases. We also present a simple tool that can be used to screen the quality of data through the use of domain specific data quality indicators. These indicators can significantly contribute to better data, to give steps towards a continuous increase of data quality and, certainly, to better informed decision-making.
- Intelligent Reports for Group Decision Support SystemsPublication . Carneiro, João; Conceição, Luís; Martinho, Diogo; Marreiros, Goreti; Novais, PauloThe topic of Group Decision Support Systems (GDSS) is a not a recent one. In fact, it has been studied for the last three decades. In this work, we deal with the topic of Intelligent Reports in GDSS’ context. A defective interaction between the system and the decision-maker may lead to the complete failure of the GDSS. However, the study on how and which kind of information should be exposed to decision-makers is almost non-existent. Therefore, it is important to create reports adapted to the specific necessities of each decision-maker so that each one can ac-knowledge the advantage to use the system and feel motivated to do so. We believe that in this work, we approach important points that require special attention when developing Intelligent Reports. We navigate through all the important factors that affect decision-makers while making a decision. We detail each point and link them to all related questions and to which kind of structure an Intelligent Report should have in order to not compromise the success of the GDSS.
- Intelligent supervisory control system for home devices using a cyber physical approachPublication . Ko, Hoon; Marreiros, Goreti; Morais, H.; Vale, Zita; Ramos, CarlosAlthough we have many electric devices at home, there are just few systems to evaluate, monitor and control them. Sometimes users go out and leave their electric devices turned on what can cause energy wasting and dangerous situations. Therefore most of the users may want to know the using states of their electrical appliances through their mobile devices in a pervasive way. In this paper, we propose an Intelligent Supervisory Control System to evaluate, monitor and control the use of electric devices in home, from outside. Because of the transferring data to evaluate, monitor and control user's location and state of home (ex. nobody at home) may be opened to attacks leading to dangerous situations. In our model we include a location privacy module and encryption module to provide security to user location and data. Intelligent Supervising Control System gives to the user the ability to manage electricity loads by means of a multi-agent system involving evaluation, monitoring, control and energy resource agents.
- LAID - a smart decision room with ambient intelligence for group decision making and argumentation support considering emotional aspectsPublication . Marreiros, Goreti; Santos, Ricardo; Freitas, Carlos Filipe; Ramos, Carlos; Neves, José; Bulas-Cruz, JoséDecision Making is one of the most important activities of the human being. Nowadays decisions imply to consider many different points of view, so decisions are commonly taken by formal or informal groups of persons. Groups exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. Group Decision Making is a social activity in which the discussion and results consider a combination of rational and emotional aspects. In this paper we will present a Smart Decision Room, LAID (Laboratory of Ambient Intelligence for Decision Making). In LAID environment it is provided the support to meeting room participants in the argumentation and decision making processes, combining rational and emotional aspects.
- Context-aware emotion-based model for group decision makingPublication . Marreiros, Goreti; Santos, Ricardo; Ramos, Carlos; Neves, JoséInvolving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
- Electricity consumption forecasting in office buildings: an artificial intelligence approachPublication . Jozi, Aria; Pinto, Tiago; Marreiros, Goreti; Vale, ZitaThe rising needs for increased energy efficiency and better use of renewable energy sources bring out the necessity for improved energy management and forecasting models. Electricity consumption, in particular, is subject to large variations due to the effect of multiple variables, such as the temperature, luminosity or humidity, and of course, consumers' habits. Current forecasting models are not able to deal adequately with the influence and correlation between the multiple involved variables. Hence, novel, adaptive forecasting models are needed. This paper presents a novel approach based on multiple artificial intelligence-based forecasting algorithms. The considered algorithms are artificial neural networks, support vector machines hybrid fuzzy inference systems, Wang and Mendel's fuzzy rule learning method and a genetic fuzzy system for fuzzy rule learning based on the MOGUL methodology. These algorithms are used to forecast the electricity consumption of a real office building, using multiple input variables and consumption disaggregation.
- The cross crypto scheme cipher integration for securing SCADA component communicationPublication . Choi, Minkyu; Robles, Rosslin John; Marreiros, Goreti; Vale, Zita; Ramos, Carlos; Ko, HoonCritical Infrastructures became more vulnerable to attacks from adversaries as SCADA systems become connected to the Internet. The open standards for SCADA Communications make it very easy for attackers to gain in-depth knowledge about the working and operations of SCADA networks. A number of Intenrnet SCADA security issues were raised that have compromised the authenticity, confidentiality, integrity and non-repudiation of information transfer between SCADA Components. This paper presents an integration of the Cross Crypto Scheme Cipher to secure communications for SCADA components. The proposed scheme integrates both the best features of symmetric and asymmetric encryptiontechniques. It also utilizes the MD5 hashing algorithm to ensure the integrity of information being transmitted.
- Supporting Argumentation Dialogues in Group Decision Support Systems: An Approach Based on Dynamic ClusteringPublication . Conceição, Luís; Rodrigues, Vasco; Meira, Jorge; Marreiros, Goreti; Novais, PauloGroup decision support systems (GDSSs) have been widely studied over the recent decades. The Web-based group decision support systems appeared to support the group decision-making process by creating the conditions for it to be effective, allowing the management and participation in the process to be carried out from any place and at any time. In GDSS, argumentation is ideal, since it makes it easier to use justifications and explanations in interactions between decision-makers so they can sustain their opinions. Aspect-based sentiment analysis (ABSA) intends to classify opinions at the aspect level and identify the elements of an opinion. Intelligent reports for GDSS provide decision makers with accurate information about each decision-making round. Applying ABSA techniques to group decision making context results in the automatic identification of alternatives and criteria, for instance. This automatic identification is essential to reduce the time decision makers take to step themselves up on group decision support systems and to offer them various insights and knowledge on the discussion they are participating in. In this work, we propose and implement a methodology that uses an unsupervised technique and clustering to group arguments on topics around a specific alternative, for example, or a discussion comparing two alternatives. We experimented with several combinations of word embedding, dimensionality reduction techniques, and different clustering algorithms to achieve the best approach. The best method consisted of applying the KMeans++ clustering technique, using SBERT as a word embedder with UMAP dimensionality reduction. These experiments achieved a silhouette score of 0.63 with eight clusters on the baseball dataset, which wielded good cluster results based on their manual review and word clouds. We obtained a silhouette score of 0.59 with 16 clusters on the car brand dataset, which we used as an approach validation dataset. With the results of this work, intelligent reports for GDSS become even more helpful, since they can dynamically organize the conversations taking place by grouping them on the arguments used.
- Modelling group decision simulation through argumentationPublication . Marreiros, Goreti; Novais, Paulo; Machado, José; Ramos, Carlos; Neves, JoséGroup decision making plays an important role in today’s organisations. The impact of decision making is so high and complex, that rarely the decision making process is made individually. In Group Decision Argumentation, there is a set of participants, with different profiles and expertise levels, that exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. In this paper, it is proposed a Multi-Agent simulator for the behaviour representation of group members in a decision making process. Agents behave depending on rational and emotional intelligence and use persuasive argumentation to convince and make alternative choices.