Loading...
821 results
Search Results
Now showing 1 - 10 of 821
- Power law and entropy analysis of catastrophic phenomenaPublication . Machado, J.A.Tenreiro; Pinto, Carla M.A.; Lopes, António M.Catastrophic events, such as wars and terrorist attacks, tornadoes and hurricanes, earthquakes, tsunamis, floods and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties has separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the statistical distributions of the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data sets are better approximated by two PLs instead of a single one. We plot the PL parameters, corresponding to several events, and observe an interesting pattern in the charts, where the lines that connect each pair of points defining the double PLs are almost parallel to each other. A complementary data analysis is performed by means of the computation of the entropy. The results reveal relationships hidden in the data that may trigger a future comprehensive explanation of this type of phenomena.
- Fractional model for malaria transmission under control strategiesPublication . Pinto, Carla M.A.; Machado, J.A.TenreiroWe study a fractional model for malaria transmission under control strategies.Weconsider the integer order model proposed by Chiyaka et al. (2008) in [15] and modify it to become a fractional order model. We study numerically the model for variation of the values of the fractional derivative and of the parameter that models personal protection, b. From observation of the figures we conclude that as b is increased from 0 to 1 there is a corresponding decrease in the number of infectious humans and infectious mosquitoes, for all values of α. This means that this result is invariant for variation of fractional derivative, in the values tested. These results are in agreement with those obtained in Chiyaka et al.(2008) [15] for α = 1.0 and suggest that our fractional model is epidemiologically wellposed.
- Fractional Dynamics of Computer Virus PropagationPublication . Pinto, Carla M.A.; Machado, J.A.TenreiroWe propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
- Modified SIQR model for the COVID‐19 outbreak in several countriesPublication . Pinto, Carla M. A.; Tenreiro Machado, J. A.; Burgos‐Simón, ClaraIn this paper, we propose a modified Susceptible-Infected-Quarantine-Recovered (mSIQR) model, for the COVID-19 pandemic. We start by proving the well-posedness of the model and then compute its reproduction number and the corresponding sensitivity indices. We discuss the values of these indices for epidemiological relevant parameters, namely, the contact rate, the proportion of unknown infectious, and the recovering rate. The mSIQR model is simulated, and the outputs are fit to COVID-19 pandemic data from several countries, including France, US, UK, and Portugal. We discuss the epidemiological relevance of the results and provide insights on future patterns, subjected to health policies.
- Double power laws, fractals and self-similarityPublication . Pinto, Carla M.A.; Lopes, António M.; Machado, J.A.TenreiroPower law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
- Multidimensional scaling visualization of earthquake phenomenaPublication . Lopes, António M.; Machado, J.A.Tenreiro; Pinto, Carla M.A.; Galhano, AlexandraEarthquakes are associated with negative events, such as large number of casualties, destruction of buildings and infrastructures, or emergence of tsunamis. In this paper, we apply the Multidimensional Scaling (MDS) analysis to earthquake data. MDS is a set of techniques that produce spatial or geometric representations of complex objects, such that, objects perceived to be similar/distinct in some sense are placed nearby/distant on the MDS maps. The interpretation of the charts is based on the resulting clusters since MDS produces a different locus for each similarity measure. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analyzed. The events, characterized by their magnitude and spatiotemporal distributions, are divided into groups, either according to the Flinn–Engdahl seismic regions of Earth or using a rectangular grid based in latitude and longitude coordinates. Space-time and Space-frequency correlation indices are proposed to quantify the similarities among events. MDS has the advantage of avoiding sensitivity to the non-uniform spatial distribution of seismic data, resulting from poorly instrumented areas, and is well suited for accessing dynamics of complex systems. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools, for understanding the global behavior of earthquakes.
- On the fractional-order modeling of winePublication . Lopes, António M.; Machado, J.A.Tenreiro; Ramalho, ElisaThis paper uses electrical impedance spectroscopy for characterizing different varieties of wine and compares the results with standard chemical analysis. In a first phase, the electrical impedance of wine samples is measured and modeled by means of fractional-order transfer functions. The impedance model parameters are then correlated with chemical data to unveil potential relationships between the distinct descriptions. In a second phase, the multidimensional scaling technique is adopted for data clustering and visualizing. The methodology is illustrated on a set of commercially available wines. The results demonstrate that fractional-order models represent conveniently the impedance of wine, with a reduced number of parameters.
- Fractional dynamics and MDS visualization of earthquake phenomenaPublication . Lopes, António M.; Machado, J.A.Tenreiro; Pinto, Carla M.A.; Galhano, AlexandraThis paper analyses earthquake data in the perspective of dynamical systems and fractional calculus (FC). This new standpoint uses Multidimensional Scaling (MDS) as a powerful clustering and visualization tool. FC extends the concepts of integrals and derivatives to non-integer and complex orders. MDS is a technique that produces spatial or geometric representations of complex objects, such that those objects that are perceived to be similar in some sense are placed on the MDS maps forming clusters. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analysed. The events are characterized by their magnitude and spatiotemporal distributions and are divided into fifty groups, according to the Flinn–Engdahl (F–E) seismic regions of Earth. Several correlation indices are proposed to quantify the similarities among regions. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools for understanding the global behaviour of earthquakes.
- Dynamical analysis of compositionsPublication . Costa, António Cardoso; Machado, J. A. Tenreiro; Lima, MiguelThis paper analyzes musical opus from the point of view of two mathematical tools, namely the entropy and the multidimensional scaling (MDS). The Fourier analysis reveals a fractional dynamics, but the time rhythm variations are diluted along the spectrum. The combination of time-window entropy and MDS copes with the time characteristics and is well suited to treat a large volume of data. The experiments focus on a large number of compositions classified along three sets of musical styles, namely “Classical”, “Jazz”, and “Pop & Rock” compositions. Without lack of generality, the present study describes the application of the tools and the sets of musical compositions in a methodology leading to clear conclusions, but extensions to other possibilities are straightforward. The results reveal significant differences in the musical styles, demonstrating the feasibility of the proposed strategy and motivating further developments toward a dynamical analysis of musical compositions.
- Can power laws help us understand gene and proteome information?Publication . Costa, António Cardoso; Machado, J.A.Tenreiro; Quelhas, DulceProteins are biochemical entities consisting of one or more blocks typically folded in a 3D pattern. Each block (a polypeptide) is a single linear sequence of amino acids that are biochemically bonded together. The amino acid sequence in a protein is defined by the sequence of a gene or several genes encoded in the DNA-based genetic code. This genetic code typically uses twenty amino acids, but in certain organisms the genetic code can also include two other amino acids. After linking the amino acids during protein synthesis, each amino acid becomes a residue in a protein, which is then chemically modified, ultimately changing and defining the protein function. In this study, the authors analyze the amino acid sequence using alignment-free methods, aiming to identify structural patterns in sets of proteins and in the proteome, without any other previous assumptions. The paper starts by analyzing amino acid sequence data by means of histograms using fixed length amino acid words (tuples). After creating the initial relative frequency histograms, they are transformed and processed in order to generate quantitative results for information extraction and graphical visualization. Selected samples from two reference datasets are used, and results reveal that the proposed method is able to generate relevant outputs in accordance with current scientific knowledge in domains like protein sequence/proteome analysis.