Browsing by Author "Slezakova, Klara"
Now showing 1 - 10 of 32
Results Per Page
Sort Options
- Air pollution from traffic emissions in Oporto, Portugal: health and environmental implicationsPublication . Slezakova, Klara; Castro, Dionísia; Begonha, Arlindo; Delerue-Matos, Cristina; Alvim-Ferraz, Maria da Conceição M.; Morais, Simone; Pereira, Maria do CarmoAir pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.
- Analysis of polycyclic aromatic hydrocarbons in atmospheric particulate samples by microwaveassisted extraction and liquid chromatographyPublication . Castro, Dionísia; Slezakova, Klara; Oliva-Teles, Maria Teresa; Delerue-Matos, Cristina; Alvim-Ferraz, Maria da Conceição M.; Morais, Simone; Pereira, Maria do CarmoA methodology based on microwave-assisted extraction (MAE) and LC with fluorescence detection (FLD) was investigated for the efficient determination of 15 polycyclic aromatic hydrocarbons (PAHs) regarded as priority pollutants by the US Environmental Protection Agency and dibenzo(a,l)pyrene in atmospheric particulate samples. PAHs were successfully extracted from real outdoor particulate matter (PM) samples with recoveries ranging from 81.4±8.8 to 112.0±1.1%, for all the compounds except for naphthalene (62.3±18.0%) and anthracene (67.3±5.7%), under the optimum MAE conditions (30.0 mL of ACN for 20 min at 110ºC). No clean-up steps were necessary prior to LC analysis. LOQs ranging from 0.0054 ng/m3 for benzo( a)anthracene to 0.089 ng/m3 for naphthalene were reached. The validated MAE methodology was applied to the determination of PAHs from a set of real world PM samples collected in Oporto (north of Portugal). The sum of particulate-bound PAHs in outdoor PM ranged from 2.5 and 28 ng/m3.
- Assessment of air quality in preschool environments (3-5 years old children) with emphasis on elemental composition of PM10 and PM2.5Publication . Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria Carmo; Morais, SimoneThis study evaluated concentrations of main air pollutants in a Portuguese preschool (indoors/outdoors) environment, with emphasis on elemental characterization of different PM fractions, and estimated risks for the pupils (aged 3-5 years). With exception to total volatile organic compounds, levels of PM10, PM2.5, CO, CO2, and formaldehyde were below legislative guidelines. Calcium, sodium, aluminium, and potassium were the most abundant elements in indoor PM (82-84% of the analysed content) resulting mainly from crustal sources. Carcinogenic elements (1-2% of the indoor analysed content) were mostly PM2.5- bound (83-91%). Indoor-to-outdoor ratios of individual elements indicated contributions of indoor origin and from penetration of outdoor emissions indoors; trace metals were associated with ambient anthropogenic emissions (namely traffic). Non-carcinogenic and carcinogenic risks from overall preschool exposure were acceptable for children; for adults carcinogenic risks exceeded (4-11 times) the USEPA recommend value of 10-6, being 8-40 times higher than for children.
- Assessment of exposure to polycyclic aromatic hydrocarbons inpreschool children: Levels and impact of preschool indoor air onexcretion of main urinary monohydroxyl metabolitesPublication . Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, SimoneThe present work aimed to assess exposure of preschool children to polycyclic aromatic hydrocar-bons (PAHs) by environmental monitoring (eighteen compounds in air) and biomonitoring (six urinary biomarkers of exposure (OH-PAHs)). The impact of preschool indoor air on excretion of urinary mono-hydroxyl metabolites was also evaluated. Gaseous and particulate-bound PAHs were simultaneously collected indoors and outdoors in two Portuguese preschools. PAHs and OH-PAHs were quantified by high-performance liquid chromatography with fluorescence and photodiode array detection. Total air (gaseous + total suspended particles) levels of PAHs (PAHs) were higher indoors than outdoors. Gaseous phase (composed by ≥98% of 2–3 rings compounds) and particulate-bound PAHs (90–99% of 5–6 rings) accounted for 93–95% and 5–7% of PAHs in indoor air, respectively. Total (including probable/possible) carcinogenic PAHs represented 26–45% of PAHs; naphthalene and dibenz[a,h]anthracene were the strongest contributors. A similar distribution profile was observed between airborne PAHs and uri-nary OH-PAHs. Urinary 1-hydroxynaphthalene + 1-hydroxyacenaphthene represented more than 78%of OH-PAHs, being followed by 2-hydroxyfluorene, 1-hydroxypyrene, and 1-hydroxyphenanthrene. 3-hydroxybenzo[a]pyrene (PAH biomarker of carcinogenicity) was not detected. Results suggest that children had preschool indoor air as their major exposure source of naphthalene and acenaphthene, while no conclusion was reached regarding fluorene, phenanthrene and pyrene.
- Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children)Publication . Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, SimoneThis work characterizes levels of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of preschool environments, and assesses the respective risks for 3–5-years old children. Eighteen gaseous and particulate (PM1 and PM2.5) PAHs were collected indoors and outdoors during 63 days at preschools in Portugal. Gaseous PAHs accounted for 94–98% of total concentration (ΣPAHs). PAHs with 5–6 rings were predominantly found in PM1 (54–74% particulate ΣPAHs). Lighter PAHs originated mainly from indoor sources whereas congeners with 4–6 rings resulted mostly from outdoor emissions penetration (motor vehicle, fuel burning). Total cancer risks of children were negligible according to USEPA, but exceeded (8–13 times) WHO health-based guideline. Carcinogenic risks due to indoor exposure were higher than for outdoors (4–18 times).
- Assessment of ultrafine particles in Portuguese preschools: levels and exposure dosesPublication . Fonseca, J.; Slezakova, Klara; Morais, S.; Pereira, M.C.The aim of this work was to assess ultrafine particles (UFP) number concentrations in different microenvironments of Portuguese preschools and to estimate the respective exposure doses of UFP for 3–5-year-old children (in comparison with adults). UFP were sampled both indoors and outdoors in two urban (US1, US2) and one rural (RS1) preschool located in north of Portugal for 31 days. Total levels of indoor UFP were significantly higher at the urban preschools (mean of 1.82x104 and 1.32x104 particles/cm3 at US1 an US2, respectively) than at the rural one (1.15x104 particles/cm3). Canteens were the indoor microenvironment with the highest UFP (mean of 5.17x104, 3.28x104, and 4.09x104 particles/cm3 at US1, US2, and RS1), whereas the lowest concentrations were observed in classrooms (9.31x103, 11.3x103, and 7.14x103 particles/cm3 at US1, US2, and RS1). Mean indoor/outdoor ratios (I/O) of UFP at three preschools were lower than 1 (0.54–0.93), indicating that outdoor emissions significantly contributed to UFP indoors. Significant correlations were obtained between temperature, wind speed, relative humidity, solar radiation, and ambient UFP number concentrations. The estimated exposure doses were higher in children attending urban preschools; 3–5-year-old children were exposed to 4–6 times higher UFP doses than adults with similar daily schedules.
- Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impactsPublication . Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria Carmo; Morais, SimoneChildren, an important vulnerable group, spend most of their time at schools (up to 10 h per day, mostly indoors) and the respective air quality may significantly impact on children health. Thus, this work reviews the published studies on children biomonitoring and environmental exposure to particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at school microenvironments (indoors and outdoors), major sources and potential health risks. A total of 28, 35, and 31% of the studies reported levels that exceeded the international outdoor ambient air guidelines for PM10, PM2.5, and benzo(a)pyrene, respectively. Indoor and outdoor concentrations of PM10 at European schools, the most characterized continent, ranged between 7.5 and 229 μg/m3 and 21-166 μg/m3, respectively; levels of PM2.5 varied between 4 and 100 μg/m3 indoors and 6.1-115 μg/m3 outdoors. Despite scarce information in some geographical regions (America, Oceania and Africa), the collected data clearly show that Asian children are exposed to the highest concentrations of PM and PAHs at school environments, which were associated with increased carcinogenic risks and with the highest values of urinary total monohydroxyl PAH metabolites (PAH biomarkers of exposure). Additionally, children attending schools in polluted urban and industrial areas are exposed to higher levels of PM and PAHs with increased concentrations of urinary PAH metabolites in comparison with children from rural areas. Strong evidences demonstrated associations between environmental exposure to PM and PAHs with several health outcomes, including increased risk of asthma, pulmonary infections, skin diseases, and allergies. Nevertheless, there is a scientific gap on studies that include the characterization of PM fine fraction and the levels of PAHs in the total air (particulate and gas phases) of indoor and outdoor air of school environments and the associated risks for the health of children. There is a clear need to improve indoor air quality in schools and to establish international guidelines for exposure limits in these environments.
- Children’s Indoor Exposures to (Ultra)Fine Particles in an Urban Area: Comparison Between School and Home EnvironmentsPublication . Slezakova, Klara; Texeira, Cátia; Morais, Simone; Pereira, Maria do CarmoDue to their detrimental effects on human health, scientific interest in ultrafine particles (UFP), has been increasing but available information is far from comprehensive. Children, who represent one of the most susceptible subpopulation, spend the majority of time in schools and homes. Thus, the aim of this study is to (1) assess indoor levels of particle number concentrations (PNC) in ultrafine and fine (20–1000 nm) range at school and home environments and (2) compare indoor respective dose rates for 3- to 5-yr-old children. Indoor particle number concentrations in range of 20–1000 nm were consecutively measured during 56 d at two preschools (S1 and S2) and three homes (H1–H3) situated in Porto, Portugal. At both preschools different indoor microenvironments, such as classrooms and canteens, were evaluated. The results showed that total mean indoor PNC as determined for all indoor microenvironments were significantly higher at S1 than S2. At homes, indoor levels of PNC with means ranging between 1.09 × 104 and 1.24 × 104 particles/cm3 were 10–70% lower than total indoor means of preschools (1.32 × 104 to 1.84 × 104 particles/cm3). Nevertheless, estimated dose rates of particles were 1.3- to 2.1-fold higher at homes than preschools, mainly due to longer period of time spent at home. Daily activity patterns of 3- to 5-yr-old children significantly influenced overall dose rates of particles. Therefore, future studies focusing on health effects of airborne pollutants always need to account for children’s exposures in different microenvironments such as homes, schools, and transportation modes in order to obtain an accurate representation of children overall exposure.
- Contribution of traffic and tobacco smoke in the distribution of polycyclic aromatic hydrocarbons on outdoor and indoor PM2.5Publication . Castro, Dionísia; Slezakova, Klara; Delerue-Matos, Cristina; Alvim-Ferraz, Maria da Conceição M.; Morais, S.; Pereira, Maria do CarmoTraffic emissions and tobacco smoke are considered two main sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air. In this study, the impact of these sources on the level of fine particulate matter (PM2.5) and on the distribution of 15 PAHs regarded as priority pollutants by the US-EPA on PM2.5 were evaluated and compared. Outdoor and indoor PM2.5 samples were collected during winter 2008 in Oporto city in Portugal, for sampling periods of 12 and 24 hours, respectively. The outdoor PM2.5 were sampled at one site directly influenced by traffic emissions and the indoor PM2.5 samples were collected at one home directly influenced by tobacco smoke and another one without smoke. A methodology based on microwave-assisted extraction and liquid chromatography with fluorescence detection was applied for the efficient PAHs determination in indoor and outdoor PM2.5. PAHs in indoor PM2.5 concentrations were significantly influenced by the presence of traffic and tobacco smoking emissions. The mean of ΣPAHs in the outdoor traffic PM2.5 was not significantly different from the value attained in the indoor without smoking site. The tobacco smoke increased significantly PAHs concentrations on average about 1000 times more, when compared with the outdoor profile samples suggesting that tobacco smoking may be the most important source of indoor PAHs pollution.
- Evaluation of atmospheric deposition and patterns of polycyclic aromatic hydrocarbons in façades of historic monuments of Oporto (Portugal)Publication . Slezakova, Klara; Castro, Dionísia; Begonha, Arlindo; Delerue-Matos, Cristina; Alvim-Ferraz, Maria da Conceição M.; Morais, Simone; Pereira, Maria do CarmoAtmospheric pollution by motor vehicles is considered a relevant source of damage to architectural heritage. Thus the aim of this work was to assess the atmospheric depositions and patterns of polycyclic aromatic hydrocarbons (PAHs) in façades of historical monuments. Eighteen PAHs (16 PAHs considered by US EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were determined in thin black layers collected from façades of two historical monuments: Hospital Santo António and Lapa Church (Oporto, Portugal). Scanning electron microscopy (SEM) was used for morphological and elemental characterisation of thin black layers; PAHs were quantified by microwave-assisted extraction combined with liquid chromatography (MAE-LC). The thickness of thin black layers were 80–110 μm and they contained significant levels of iron, sulfur, calcium and phosphorus. Total concentrations of 18 PAHs ranged from 7.74 to 147.92 ng/g (mean of 45.52 ng/g) in thin black layers of Hospital Santo António, giving a range three times lower than at Lapa Church (5.44– 429.26 ng/g; mean of 110.25 ng/g); four to six rings compounds accounted at both monuments approximately for 80–85% of ΣPAHs. The diagnostic ratios showed that traffic emissions were significant source of PAHs in thin black layers. Composition profiles of PAHs in thin black layers of both monuments were similar to those of ambient air, thus showing that air pollution has a significant impact on the conditions and stone decay of historical building façades. The obtained results confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere.