Browsing by Author "Santos, Gabriel"
Now showing 1 - 10 of 44
Results Per Page
Sort Options
- Adaptive learning in agents behaviour: A framework for electricity markets simulationPublication . Pinto, Tiago; Vale, Zita; Sousa, Tiago; Praça, Isabel; Santos, Gabriel; Morais, HugoElectricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
- An Interoperable Approach for Energy Systems Simulation: Electricity Market Participation OntologiesPublication . Santos, Gabriel; Pinto, Tiago; Praça, Isabel; Vale, ZitaElectricity markets are complex environments with very particular characteristics. Some of the main ones for this complexity are the need for an adequate integration of renewable energy sources and the electricity markets’ restructuring process. The growth of simulation tool usage is driven by the need to understand those mechanisms and how the involved players’ interactions affect the markets’ outcomes. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. Although, they share a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow players from different systems to interact in common market environments. This paper proposes the use of ontologies for semantic interoperability between multi-agent platforms in the scope of electricity markets simulation. The achieved results allow the identification of the added value gained by using the proposed ontologies. They facilitate the integration of independent multi-agent simulators, by providing a way for communications to be understood by heterogeneous agents from different systems.
- Application Ontology for Multi-Agent and Web-Services’ Co-Simulation in Power and Energy SystemsPublication . Teixeira, Brígida; Santos, Gabriel; Pinto, Tiago; Vale, Zita; Corchado, Juan M.Power and energy systems are very complex, and several tools are available to assist operators in their planning and operation. However, these tools do not allow a sensitive analysis of the impact of the interaction between the different sub-domains and, consequently, in obtaining more realistic and reliable results. One of the key challenges in this area is the development of decision support tools to address the problem as a whole. Tools Control Center - TOOCC - proposed and developed by the authors, enables the co-simulation of heterogeneous systems to study the electricity markets, the operation of the smart grids, and the energy management of the final consumer, among others. To this end, it uses an application ontology that supports the definition of scenarios and results comparison, while easing the interoperability among the several systems. This paper presents the application ontology developed. The paper addresses the methodology used for its development, its purpose and requirements, and its concepts, relations, facets and instances. The ontology application is illustrated through a case study, where different requirements are tested and demonstrated. It is concluded that the proposed application ontology accomplishes its goals, as it is suitable to represent the required knowledge to support the interoperability among the different considered systems.
- Balancing market integration in MASCEM electricity market simulatorPublication . Santos, Gabriel; Pinto, Tiago; Vale, Zita; Morais, H.; Praça, IsabelWith the restructuring of the energy sector in industrialized countries there is an increased complexity in market players’ interactions along with emerging problems and new issues to be addressed. Decision support tools that facilitate the study and understanding of these markets are extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent simulator for competitive electricity markets. It is essential to reinforce MASCEM with the ability to recreate electricity markets reality in the fullest possible extent, making it able to simulate as many types of markets models and players as possible. This paper presents the development of the Balancing Market in MASCEM. A key module to the study of competitive electricity markets, as it has well defined and distinct characteristics previously implemented.
- BRICKS: Building’s reasoning for intelligent control knowledge-based systemPublication . Santos, Gabriel; Vale, Zita; Faria, Pedro; Gomes, LuisBuilding energy management systems have been largely implemented, focusing on specific domains. When installed together, they lack interoperability to make them work correctly and to achieve a centralized user interface. The Building's Reasoning for Intelligent Control Knowledge-based System (BRICKS) overcomes these issues by developing an interoperable building management system able to aggregate different interest domains. It is a context-aware semantic rule-based system for intelligent management of buildings' energy and security. Its output can be a set of alarms, notifications, or control actions to take. BRICKS itself, and its features are the innovative contribution of the present paper. It is very important for buildings' energy management, namely in the scope of demand response programs. In this paper, it is shown how semantics is used to enable the knowledge exchange between different devices, algorithms, and models, without the need for reprogramming the system. A scenario is deployed in a real building for demonstration.
- Coalition of distributed generation units to Virtual Power Players - a game theory approachPublication . Morais, Hugo; Sousa, Tiago M.; Santos, Gabriel; Pinto, Tiago; Praça, Isabel; Vale, ZitaSmart Grids (SGs) have emerged as the new paradigm for power system operation and management, being designed to include large amounts of distributed energy resources. This new paradigm requires new Energy Resource Management (ERM) methodologies considering different operation strategies and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis of the classifications that were attributed by each VPP to the distributed generation units, as well as in the analysis of the previous established contracts by each player. The proposed classification model is based in fourteen parameters including technical, economical and behavioural ones. Depending of the VPP strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one hundred and fifty real distributed generation units is included in the paper.
- Complex market integration in MASCEM electricity market simulatorPublication . Santos, Gabriel; Pinto, Tiago; Morais, H.; Praça, Isabel; Vale, ZitaThe restructuring that the energy sector has suffered in industrialized countries originated a greater complexity in market players’ interactions, and thus new problems and issues to be addressed. Decision support tools that facilitate the study and understanding of these markets become extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent system for simulating competitive electricity markets. To provide MASCEM with the capacity to recreate the electricity markets reality in the fullest possible extent, it is essential to make it able to simulate as many market models and player types as possible. This paper presents the development of the Complex Market in MASCEM. This module is fundamental to study competitive electricity markets, as it exhibits different characteristics from the already implemented market types.
- Constrained Generation Bids in Local Electricity Markets: A Semantic ApproachPublication . Santos, Gabriel; Faria, Pedro; Vale, Zita; Pinto, Tiago; Corchado, Juan M.he worldwide investment in renewable energy sources is leading to the formation of local energy communities in which users can trade electric energy locally. Regulations and the required enablers for effective transactions in this new context are currently being designed. Hence, the development of software tools to support local transactions is still at an early stage and faces the challenge of constant updates to the data models and business rules. The present paper proposes a novel approach for the development of software tools to solve auction-based local electricity markets, considering the special needs of local energy communities. The proposed approach considers constrained bids that can increase the effectiveness of distributed generation use. The proposed method takes advantage of semantic web technologies, in order to provide models with the required dynamism to overcome the issues related to the constant changes in data and business models. Using such techniques allows the system to be agnostic to the data model and business rules. The proposed solution includes the proposed constraints, application ontology, and semantic rule templates. The paper includes a case study based on real data that illustrates the advantages of using the proposed solution in a community with 27 consumers
- A context-based building security alarm through power and sensors analysisPublication . Silva, Francisco; Santos, Gabriel; Praça, Isabel; Vale, ZitaThe great technology advance over the last few years has led to a great increase in the quantity and availability of information. Having the means to obtain the required information, the main challenge is to make the best use of such information, by extracting as much knowledge as possible. The building security management process is no exception. With the emergence of IoT and the mature approach of SCADA, it is possible to guarantee a higher level of security, by analyzing the data that they are able to provide. However, a careful analysis is required to make the system able to correctly distinguish a normal situation from an undesired one. A given situation can be normal in a given context but reason for alarm in another. For this purpose, this paper presents a building security alarm enhanced with context-awareness which allows it to correctly identify an undesired situation in a given context.
- D7.3 Proceedings of the Second DREAM-GO Workshop: Real-Time Demand Response and Intelligent Direct Load ControlPublication . Vale, Zita; Khorram Ghahfarrokhi, Mahsa; Faria, Pedro; Spínola, João; Canizes, Bruno; Pinto, Tiago; Soares, João; Chamoso, Pablo; Santos, Daniel; Garcia, Oscar; Catalina, Jorge; Guevarra, Fabio; Navarro-Cáceres, María; Gazafroudi, Amin Shokri; Prieto-Castrillo, Francisco; Corchado, Juan Manuel; Santos, Gabriel; Teixeira, Brígida; Praça, Isabel; Sousa, Filipe; Zawislak, Krzysztof; Iglesia, Daniel Hernández de la; Barriuso, Alberto Lopez; Lozano, Alvaro; Herrero, Jorge Revuelta; Landeck, Jorge; Paz, Juan F. de; Corchado, Juan M.; Garcia, Ruben Martin; González, Gabriel Villarrubia; Bajo, Javier; Matos, Luisa; Klein, L. Pires; Carreira, R.; Torres, I.; Landeck, JorgeProceedings of the Second DREAM-GO Workshop Real-Time Demand Response and Intelligent Direct Load Control
