Repository logo
 
Publication

Empirical Laws and Foreseeing the Future of Technological Progress

dc.contributor.authorLopes, António M.
dc.contributor.authorMachado, J.A.Tenreiro
dc.contributor.authorGalhano, Alexandra M.
dc.date.accessioned2017-01-26T15:20:48Z
dc.date.available2017-01-26T15:20:48Z
dc.date.issued2016
dc.description.abstractThe Moore’s law (ML) is one of many empirical expressions that is used to characterize natural and artificial phenomena. The ML addresses technological progress and is expected to predict future trends. Yet, the “art” of predicting is often confused with the accurate fitting of trendlines to past events. Presently, data-series of multiple sources are available for scientific and computational processing. The data can be described by means of mathematical expressions that, in some cases, follow simple expressions and empirical laws. However, the extrapolation toward the future is considered with skepticism by the scientific community, particularly in the case of phenomena involving complex behavior. This paper addresses these issues in the light of entropy and pseudo-state space. The statistical and dynamical techniques lead to a more assertive perspective on the adoption of a given candidate law.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/e18060217pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/9451
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relation.ispartofseriesEntropy;Vol. 18, Issue 6
dc.relation.publisherversionhttp://www.mdpi.com/1099-4300/18/6/217pt_PT
dc.subjectMoore’s Lawpt_PT
dc.subjectPredictionpt_PT
dc.subjectEntropypt_PT
dc.subjectPseudo-state spacept_PT
dc.titleEmpirical Laws and Foreseeing the Future of Technological Progresspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage11pt_PT
oaire.citation.issue6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleEntropypt_PT
oaire.citation.volume18pt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_TenreiroMachado_DEE_11_2016.pdf
Size:
529.66 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: