Repository logo
 
Publication

Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review

dc.contributor.authorSebbe, Naiara P. V.
dc.contributor.authorFernandes, Filipe
dc.contributor.authorSousa, Vitor F. C.
dc.contributor.authorSilva, Francisco J. G.
dc.date.accessioned2023-01-17T11:50:42Z
dc.date.available2023-01-17T11:50:42Z
dc.date.issued2022
dc.description.abstractAdditive manufacturing is defined as a process based on the superposition of layers of materials in order to obtain 3D parts; however, the process does not allow achieve the adequate and necessary surface finishing. In addition, with the development of new materials with superior properties, some of them acquire high hardness and strength, consequently decreasing their ability to be machined. To overcome this shortcoming, a new technology assembling additive and subtractive processes, was developed and implemented. In this process, the additive methods are integrated into a single machine with subtractive processes, often called hybrid manufacturing. The additive manufacturing process is used to produce the part with high efficiency and flexibility, whilst machining is then triggered to give a good surface finishing and dimensional accuracy. With this, and without the need to transport the part from one machine to another, the manufacturing time of the part is reduced, as well as the production costs, since the waste of material is minimized, with the additive–subtractive integration. This work aimed to carry out an extensive literature review regarding additive manufacturing methods, such as binder blasting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet laminating and vat polymerization, as well as machining processes, studying the additive-subtractive integration, in order to analyze recent developments in this area, the techniques used, and the results obtained. To perform this review, ScienceDirect, Web of Knowledge and Google Scholar were used as the main source of information because they are powerful search engines in science information. Specialized books have been also used, as well as several websites. The main keywords used in searching information were: “CNC machining”, “hybrid machining”, “hybrid manufacturing”, “additive manufacturing”, “high-speed machining” and “post-processing”. The conjunction of these keywords was crucial to filter the huge information currently available about additive manufacturing. The search was mainly focused on publications of the current century. The work intends to provide structured information on the research carried out about each one of the two considered processes (additive manufacturing and machining), and on how these developments can be taken into consideration in studies about hybrid machining, helping researchers to increase their knowledge in this field in a faster way. An outlook about the integration of these processes is also performed. Additionally, a SWOT analysis is also provided for additive manufacturing, machining and hybrid manufacturing processes, observing the aspects inherent to these technologies.pt_PT
dc.description.sponsorshipThe present work was done and funded under the scope of the projects ON-SURF (ANI | P2020 | POCI-01-0247-FEDER-024521 and MCTool21 “Manufacturing of cutting tools for the 21st century: from nano-scale material design to numerical process simulation” (ref.: “POCI-01-0247- FEDER-045940”) co-funded by Portugal 2020 and FEDER, through COMPETE 2020-Operational Programme for Competitiveness and Internationalisation. This work is also sponsored by FEDER National funds FCT under the project CEMMPRE ref. “UIDB/00285/2020”. F.J.G. Silva also thanks INEGI-Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Indústria due to its support.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/met12111874pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21584
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationPOCI-01-0247-FEDER-024521pt_PT
dc.relationPOCI-01-0247- FEDER-045940pt_PT
dc.relationCentre for Mechanical Enginnering, Materials and Processes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectHybrid manufacturingpt_PT
dc.subjectCNC machiningpt_PT
dc.subjectAdditive manufacturingpt_PT
dc.subject5-axis machiningpt_PT
dc.subjectManufacturing processespt_PT
dc.titleHybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre for Mechanical Enginnering, Materials and Processes
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00285%2F2020/PT
oaire.citation.issue11pt_PT
oaire.citation.startPage1874pt_PT
oaire.citation.titleMetalspt_PT
oaire.citation.volume12pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameSilva
person.givenNameFrancisco
person.identifier1422904
person.identifier.ciencia-idB81C-4758-2D59
person.identifier.orcid0000-0001-8570-4362
person.identifier.ridI-5708-2015
person.identifier.scopus-author-id56870827300
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationd050c135-4d9d-4fb2-97d1-cac97be3f6b9
relation.isAuthorOfPublication.latestForDiscoveryd050c135-4d9d-4fb2-97d1-cac97be3f6b9
relation.isProjectOfPublicatione9972dd7-ceaf-49ee-959a-d2a0e393b124
relation.isProjectOfPublication.latestForDiscoverye9972dd7-ceaf-49ee-959a-d2a0e393b124

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART13_DEM_FGS_2022.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: