Publication
Sleep stage detection: a clinical validation study of a custom-built single-channel in-ear EEG sensor
| dc.contributor.author | Borges, Daniel Filipe | |
| dc.contributor.author | Soares, Joana I. | |
| dc.contributor.author | Silva, Heloísa | |
| dc.contributor.author | Felgueiras, João | |
| dc.contributor.author | Batista, Carla | |
| dc.contributor.author | Ferreira, Simão | |
| dc.contributor.author | Rocha, Nuno | |
| dc.contributor.author | Leal, Alberto | |
| dc.date.accessioned | 2024-10-28T16:04:10Z | |
| dc.date.available | 2024-10-28T16:04:10Z | |
| dc.date.issued | 2024-10-25 | |
| dc.description.abstract | Introduction:Sleep is vital for health. It has regenerative and protective functions, and its disruption reduces the quality of life and increases susceptibility to disease. During sleep, there is a cyclicity of distinct phases that are studied using polysomnography (PSG), a costly and technically demanding method that compromises the quality of natural sleep. The search for simpler devices for recording biological signals at home addresses some of these issues. Objective: To clinically validate a custom-built single-channel in-ear EEG sensor for sleep classification by assessing various sleep metrics and staging decisions with simultaneously recorded PSG. Methods: Prospective cross-sectional study with 28 participants, divided into two groups: healthy volunteers and clinical patients. In both groups, PSG, individual in-ear EEG- with two different electrode configurations- and actigraphic recordings (only in the healthy group) were performed simultaneously for a whole night. Statistical analysis focussed on the four main sleep metrics: TRT (total recording time), TST (total sleep time), SE (sleep efficiency), SL (sleep latency) and the 5-class classifications (wakefulness, N1, N2, N3 and REM sleep). This included correlation analyses between methods and Bland-Altman plots, Cohen’s K coefficient, and confusion matrices aiming 30-second epoch-wise agreement with an automatic sleep classification algorithm using visual sleep classification by an ERSR-certified human expert as the gold standard according to current AASM guidelines. Results: The analysed sleep data comprised 30960 epochs. The correlation analysis revealed strong positive correlations (0.90) for all variables for the in-ear sensor. The Bland-Altman plots show a high level of agreement and consistency (+- 1.87 SD), with minimal bias between methods. The average kappa values (0.75) and the confusion matrices with each method's sensitivity and specificity also show a very high level of concordance.Conclusions: In both groups, the in-ear EEG sensor showed strong correlation, agreement and reliability with the gold standard, supporting accurate sleep classification. | pt_PT |
| dc.description.version | info:eu-repo/semantics/acceptedVersion | pt_PT |
| dc.identifier.citation | Borges, D. F., Soares, J. I., Silva, H., Felgueiras, J., Batista, C., Ferreira, S., Barbosa Rocha, N., & Leal, A. (2024, outubro). Sleep stage detection: A clinical validation study of a custom-built single-channel in-ear EEG sensor. Congresso Nacional de Neurologia, Centro de Congressos do Hotel Cascais Miragem. | |
| dc.identifier.uri | http://hdl.handle.net/10400.22/26270 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Sociedade Portuguesa de Neurologia | pt_PT |
| dc.subject | Sleep | pt_PT |
| dc.subject | Polysomnography | pt_PT |
| dc.title | Sleep stage detection: a clinical validation study of a custom-built single-channel in-ear EEG sensor | pt_PT |
| dc.type | conference object | |
| dspace.entity.type | Publication | |
| oaire.citation.conferencePlace | Cascais, Portugal | pt_PT |
| person.familyName | Borges | |
| person.familyName | Soares | |
| person.familyName | Batista | |
| person.familyName | Ferreira | |
| person.familyName | Rocha | |
| person.familyName | Rodrigues Leal | |
| person.givenName | Daniel Filipe | |
| person.givenName | Joana I. | |
| person.givenName | Carla | |
| person.givenName | Simão | |
| person.givenName | Nuno | |
| person.givenName | Alberto João | |
| person.identifier | 3235598 | |
| person.identifier | 2680796 | |
| person.identifier | 192266 | |
| person.identifier.ciencia-id | 0217-87F9-58DF | |
| person.identifier.ciencia-id | B81F-1A58-0242 | |
| person.identifier.ciencia-id | B11E-1BD3-5F34 | |
| person.identifier.ciencia-id | AE16-A494-5F8B | |
| person.identifier.ciencia-id | 5F15-94D8-F634 | |
| person.identifier.orcid | 0000-0003-0189-7908 | |
| person.identifier.orcid | 0000-0002-3549-6873 | |
| person.identifier.orcid | 0000-0002-6453-8665 | |
| person.identifier.orcid | 0000-0001-8233-2217 | |
| person.identifier.orcid | 0000-0002-3139-2786 | |
| person.identifier.orcid | 0000-0002-3178-2530 | |
| person.identifier.rid | JVO-1831-2024 | |
| person.identifier.rid | M-9821-2013 | |
| person.identifier.scopus-author-id | 57912703700 | |
| person.identifier.scopus-author-id | 57359736400 | |
| person.identifier.scopus-author-id | 32867975300 | |
| rcaap.rights | closedAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | f67e814a-8ad9-4440-820a-deaccea87bb8 | |
| relation.isAuthorOfPublication | 60b3d8c2-513c-4fcf-9b0d-0c85bd34ea1b | |
| relation.isAuthorOfPublication | 3b4b4dba-ff9b-48f5-b0b6-20ea283d5db8 | |
| relation.isAuthorOfPublication | 0bd5b0fc-6849-4f36-b751-87e7f4c81eff | |
| relation.isAuthorOfPublication | 9e940914-601a-4978-8d5b-74e5ade7ada7 | |
| relation.isAuthorOfPublication | 63fa7498-1285-4038-ac5c-9c77de39dba4 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0bd5b0fc-6849-4f36-b751-87e7f4c81eff |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Borges DF et al. 2024 (in-Ear-EEG).pdf
- Size:
- 557.17 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
