Repository logo
 
Publication

Detecting BDNF gene polymorphisms using genosensors and molecular biology tools

dc.contributor.authorCaldevilla, Renato
dc.contributor.authorMorais, Stephanie L.
dc.contributor.authorCruz, Agostinho
dc.contributor.authorBarroso, M. Fátima
dc.contributor.authorSantos, Marlene
dc.date.accessioned2023-09-12T15:31:36Z
dc.date.available2023-09-12T15:31:36Z
dc.date.issued2022-10-21
dc.description.abstractMajor depressive disorder (MDD) is a complex and highly prevalent psychiatric disorder with a high impact on quality of life and negative effects on mood, behaviour, and cognition. Currently, the main medical treatment for MDD is antidepressant medication. The selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, sertraline, fluvoxamine, paroxetine and citalopram, are the most commonly prescribed drugs. However, as with all antidepressant treatments, about 30–40% of MDD patients do not respond sufficiently to SSRIs. Several factors, including genetic factors, play important roles in antidepressant responses. BDNF is one of the most investigated genes regarding depression and antidepressant response. In fact, the rs6265 (Val66Met) non-synonymous polymorphism, has been demonstrated to decrease pro-BDNF processing, and consequently affect the dependent secretion of BDNF. Curiously, carriers of Met-allele have been described to have smaller hippocampal volume, either in healthy or depressed patients. So, it is likely they can contribute to the interindividual differences in patient´s responses to antidepressants. Therefore, it is crucial to develop methodologies to predict the individual antidepressant response. In this work, two analytical approaches based in molecular biology and electrochemical genosensor techniques are under development to create a low-cost genotyping platform able to genotype BDNF SNPs related with antidepressants therapeutic response.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCaldevilla, R., Morais, S. L., Cruz, A., Barroso, M. F., & Santos, M. (2022). Detecting BDNF gene Polymorphisms using genosensors and molecular biology tools. Book of Abstracts of 5th Meeting of Medicinal Biotechnology (5MBtM) and 2nd Iberian Congress on Medicinal Biotechnology, 55. https://paginas.ess.ipp.pt/ebtm/2022/5EBTM_BookOfAbstracts.pdfpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/23525
dc.language.isoengpt_PT
dc.publisherEscola Superior Saúde - P.Portopt_PT
dc.relation.publisherversionhttps://paginas.ess.ipp.pt/ebtm/5EBTM_BookOfAbstracts.pdfpt_PT
dc.subjectMajor depressive disorderpt_PT
dc.subjectBDNFpt_PT
dc.subjectGenosensorpt_PT
dc.subjectMolecular biologypt_PT
dc.titleDetecting BDNF gene polymorphisms using genosensors and molecular biology toolspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePortopt_PT
oaire.citation.startPage55pt_PT
oaire.citation.title5º encontro em Biotecnologia Medicinal - EBTMpt_PT
person.familyNameManuel de Caldevilla Carvalho
person.familyNameCruz
person.familyNameSantos
person.givenNameRenato
person.givenNameAgostinho
person.givenNameMarlene
person.identifier2868531
person.identifier1508370
person.identifier.ciencia-id4817-5B7F-4D35
person.identifier.ciencia-id8311-B967-31C4
person.identifier.orcid0009-0009-5272-4178
person.identifier.orcid0000-0002-1157-8196
person.identifier.orcid0000-0001-5020-5942
person.identifier.scopus-author-id57110502000
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationfa11c04f-84f8-4db3-8a2d-8e9fe13fe991
relation.isAuthorOfPublicationd7ec3c5d-b3e0-4e34-8e24-4d1588876120
relation.isAuthorOfPublication8ce9ee39-a4c6-46ae-99e2-49397b550f1b
relation.isAuthorOfPublication.latestForDiscoveryfa11c04f-84f8-4db3-8a2d-8e9fe13fe991

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
POSTER_Agostinho Cruz.pdf
Size:
110.12 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: