Repository logo
 
Loading...
Project Logo
Research Project

Construction of point-of-care molecularly imprinted electrochemical devices for cancer biomarkers detection

Authors

Publications

A simple electrochemical detection of atorvastatin based on disposable screen-printed carbon electrodes modified by molecularly imprinted polymer: Experiment and simulation
Publication . Rebelo, Patrícia; Pacheco, João; Voroshylova, Iuliia; Melo, André; Cordeiro, M. Natália D.S.; Delerue-Matos, Cristina
Atorvastatin (ATV) is a statin member consumed in high quantities worldwide. In response to that, the occurrence of ATV in environmental waters has become a reality, highlighting the need of rapid and sensitive analytical devices for its monitoring. In this work, the first electrochemical molecularly imprinted polymer (MIP) sensor for the detection of ATV in water samples is presented. Computational studies were conducted based on quantum mechanical (QM) calculations and molecular dynamics (MD) simulations for rational selection of a suitable functional monomer and to study in detail the template-monomer interaction, respectively. The sensor was prepared by electropolymerisation of the selected 4-aminobenzoic acid (ABA) monomer with ATV, acting as template, on screen printed carbon electrode (SPCE). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were applied to characterise the modified electrode surfaces. The quantitative measurements were carried out with differential pulse voltammetry (DPV) in 0.1 M phosphate buffer (pH = 7). After investigation and optimisation of important experimental parameters, a linear working range down to 0.05 μmol L−1 was determined with a correlation coefficient of 0.9996 and a limit of detection (LOD) as low as 0.049 μmol L−1 (S/N = 3). High sensitivity and selectivity of the prepared sensor were demonstrated with the ability to recognise ATV molecules over its closer structural analogues. Moreover, the sensor was quickly and successfully applied in spiked water samples, proving its potential for future on-site monitoring of ATV in environmental waters.
Computational Modelling and Sustainable Synthesis of a Highly Selective Electrochemical MIP-Based Sensor for Citalopram Detection
Publication . Rebelo, Patrícia; Pacheco, João; Voroshylova, Iuliia V.; Seguro, Isabel; Cordeiro, Maria Natália D. S.; Delerue-Matos, Cristina
A novel molecularly imprinted polymer (MIP) has been developed based on a simple and sustainable strategy for the selective determination of citalopram (CTL) using screen-printed carbon electrodes (SPCEs). The MIP layer was prepared by electrochemical in situ polymerization of the 3-amino-4 hydroxybenzoic acid (AHBA) functional monomer and CTL as a template molecule. To simulate the polymerization mixture and predict the most suitable ratio between the template and functional monomer, computational studies, namely molecular dynamics (MD) simulations, were carried out. During the experimental preparation process, essential parameters controlling the performance of the MIP sensor, including CTL:AHBA concentration, number of polymerization cycles, and square wave voltammetry (SWV) frequency were investigated and optimized. The electrochemical characteristics of the prepared MIP sensor were evaluated by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Based on the optimal conditions, a linear electrochemical response of the sensor was obtained by SWV measurements from 0.1 to 1.25 µmol L−1 with a limit of detection (LOD) of 0.162 µmol L−1 (S/N = 3). Moreover, the MIP sensor revealed excellent CTL selectivity against very close analogues, as well as high imprinting factor of 22. Its applicability in spiked river water samples demonstrated its potential for adequate monitoring of CTL. This sensor offers a facile strategy to achieve portability while expressing a willingness to care for the environment
Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone
Publication . Seguro, Isabel; Rebelo, Patrícia; Pacheco, João; Delerue-Matos, Cristina
In recent years, analytical chemistry has been facing new challenges, particularly in developing low-cost, green, and easy-to-reproduce methods. In this work, a simple, reproducible, and low-cost electrochemical (voltammetric) molecularly imprinted polymer (MIP) sensor was designed specifically for the detection of trazodone (TZD). Trazodone (TZD) is an antidepressant drug consumed worldwide since the 1970s. By combining electropolymerization (surface imprinting) with screen-printed electrodes (SPCEs), the sensor is easy to prepare, is environmentally friendly (uses small amounts of reagents), and can be used for in situ analysis through integration with small, portable devices. The MIP was obtained using cyclic voltammetry (CV), using 4-aminobenzoic acid (4-ABA) as the functional monomer in the presence of TZF molecules in 0.1 M HCl. Non-imprinted control was also constructed in the absence of TZD. Both polymers were characterized using CV, and TZD detection was performed with DPV using the oxidation of TZD. The polymerization conditions were studied and optimized. Comparing the TZD signal for MIP/SPCE and NIP/SPCE, an imprinting factor of 71 was estimated, indicating successful imprinting of the TZD molecules within the polymeric matrix. The analytical response was linear in the range of 5–80 µM, and an LOD of 1.6 µM was estimated. Selectivity was evaluated by testing the sensor for molecules with a similar structure to TZD, and the ability of MIP/SPCE to selectively bind to TZD was proven. The sensor was applied to spiked tap water samples and human serum with good recoveries and allowed for a fast analysis (around 30 min).
Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3)
Publication . Pacheco, João; Silva, Marta S.V.; Freitas, Maria; Nouws, Henri; Delerue-Matos, Cristina
The incidence of breast cancer has been increasing over the years. To control and monitor this disease several tumor biomarkers have been proposed for early diagnosis, patient follow-up and/or treatment guidance. The only serum breast cancer biomarker in current use is the cancer antigen 15-3 (CA 15-3). In this work a molecularly imprinted polymer (MIP)-based electrochemical (voltammetric) sensor to monitor breast cancer was developed, based on direct surface imprinting of CA 15-3 on a screen-printed gold electrode (Au-SPE). The imprinting was performed in two steps: (1) adsorption of CA 15-3 on the surface of the Au-SPE and (2) electropolymerization of 2-aminophenol around the adsorbed protein. After extraction of the imprinted protein voltammetric analysis was conducted using hexacyanoferrate(II/III) as redox probe, measuring the signals before and after protein binding. The sensor was characterized by voltammetric techniques and electrochemical impedance spectroscopy, and the analytical responses of imprinted and non-imprinted polymer sensors were studied. A linear relationship between the peak current intensity of the redox probe and the logarithm of CA 15-3 concentration was established between 5 and 50 U mL−1, achieving a limit of detection of 1.5 U mL−1. The prepared MIP-sensor provides fast (15 min) analysis and is cheap, easy to prepare, disposable and could easily be integrated in small portable point-of care devices.
Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection
Publication . Lopes, Frederico; Pacheco, João; Rebelo, Patrícia; Delerue-Matos, Cristina
Naloxone (NLX) is a pharmaceutical used as opioid antagonist. A molecular imprinted polymer electrochemical sensor for simple and rapid detection of NLX was prepared through the modification of commercial available screen printed carbon electrode (SPCE). The SPCE was modified with multi-walled carbon nanotubes (MWCNT) by drop coating to increase the signal response and improve the sensitivity. The MIP preparation was carried out via in situ electropolymerization using 4-aminobenzoic acid (4-ABA) as functional monomer. The morphology of the obtained sensor was characterized by scanning electron microscopy (SEM). Several parameters controlling the preparation and performance of the MIP sensor were studied and optimized. The electrochemical behavior of NLX at MIP and control non-imprinted (NIP) sensor was evaluated by differential pulse voltammetry (DPV), demonstrating a better MIP response and the success of the imprinting. The proposed MIP/MWCNT/SPCE sensor showed a linear relationship between peak current intensity and NLX concentration in the range between 0.25 and 10.0 μM, with limits of detection (LOD) and quantification (LOQ) of 0.20 μM and 0.67 μM respectively. The repeatability and reproducibility were also tested with relative standard deviations (RSD) of 4.6 and 9.6% respectively. Moreover, the applicability of the method was successfully confirmed with detection of NLX in biological samples (urine and human serum). The sensor is promising to be used for screening NLX in point-of-care people with opioid overdose.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

SFRH/BPD/101419/2014

ID