Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 14
  • High-temperature tribological behaviour and machining performance of self-lubricant CrAlNAg coatings for dry milling operations
    Publication . Rajput, S.S.; Upadhyay, C.; Gangopadhyay, S.; Fernandes, F.; Fernandes, Filipe
    Tribological and machining performance of CrAlNAg coatings having different Ag content tested against AISI 1045 medium carbon steel were assessed. Wear track was evaluated by scanning electron microscopy and energy dispersive spectroscopy. 3D topography of wear track and ball counterpart was determined by non-contact type profilometer. The formation of different oxide phases on track was confirmed using Raman spectroscopy. CrAlNAg9 and CrAlNAg12 coatings were found beneficial in reducing material adhesion from counterpart thus providing protective layers to counterpart, whereas small addition of Ag did not provide any improvement on CrAlN coating performance. CrAlNAg9 coated milling inserts demonstrated best results in terms of reduction in chip temperature (∼17.5 %), cutting forces, surface roughness (∼47 %) and chip thickness (∼12.7 %) compared to uncoated inserts.
  • RF magnetron sputtered Nb–V–N composite coatings for high-temperature self-lubricant applications
    Publication . Athmani, Moussa; Kong, FanLin; Ju, Hongbo; Luan, Jing; Zhang, Chengke; Ma, Bingyang; Cavaleiro, Albano; Fernades, Filipe; Fernandes, Filipe
    Enhancing the tribological properties of hard ceramic coatings for high temperature applications is one of the hot topics in the solid lubricant field. In this paper, a series of Nb–V–N coatings with different V concentrations were deposited using RF magnetron sputtering system, and the crystalline structure, mechanical and tribological properties were investigated. Results showed that the Nb–V–N coatings regardless of V concentrations exhibited two phase fcc-NbN with V in solid solution and hcp-NbN phase. The hardness and elastic modulus of the coatings were enhanced by adding 5.3 at.% of V. The room temperature tribological properties of the coatings were improved by the addition of V well due to the enhanced mechanical properties and the nature excellent self-lubricant characteristics. The evaluation of main tribophase from the wear track at elevated temperatures from the self-lubricant V2O3 at 400 °C to the V2O5 at 800 °C, contributed to the stable and excellent anti-frictional properties of the coating with a V concentration of 12.4 at.%. However, the wear rate of the coatings drops gradually with the increase of V concentrations due to the large amount of soft but lubricant tribophases at elevated temperatures.
  • Effect of binder on oxidation properties of tungsten carbides: A review by a Conceptual Classification Approach
    Publication . Fathipour, Zahra; Hadi, Morteza; Maleki, Mohammad Reza; Fernandes, Filipe; Fernandes, Filipe
    This study presents a conceptual classification scheme to review the literature on improving the oxidation resistance of tungsten carbide by modifying the binder. The first parts of the article are dedicated to the specification of the databases, the search method, and the description of the criteria chosen to classify the articles. Then, the data collected are presented in statistical graphs according to the proposed classification scheme. The data analyzed show that most of the significant improvements in oxidation resistance are achieved with advanced production processes, especially HIP and SPS, which eliminate porosity to a very high degree. In addition, statistical studies showed that the use of new replacement binders, Ni3Al, Fe–based alloys, FeAl, and Al2O3, improved the oxidation properties in 75–100% of cases. Meanwhile, the use of high–entropy alloys (HEAs) as cermet binders may be the subject of future research for oxidation, given the recently published results of good mechanical properties.
  • Nano-multilayered ZrN‒Ag/Mo‒S‒N film design for stable anti-frictional performance at a wide range of temperatures
    Publication . Ju, Hongbo; Luan, Jing; Xu, Junhua; Cavaleiro, Albano; Evaristo, Manuel; Fernandes, Filipe; Fernandes, Filipe
    A multilayer film, composed by ZrN-Ag (20 nm) and Mo-S-N (10 nm) layers, combining the intrinsic lubricant characteristics of each layer was deposited using DC magnetron sputtering system, to promote lubrication in a wide-range of temperatures. The results showed that the ZrN-Ag/Mo-S-N multilayer film exhibited a sharp interface between the different layers. A face-centered cubic (fcc) dual-phases of ZrN and Ag co-existed in the ZrN-Ag layers, whilst the Mo-S-N layers displayed a mixture of hexagonal close-packed MoS2 (hcp-MoS2) nano-particles and an amorphous phase. The multilayer film exhibited excellent room temperature (RT) triblogical behavior, as compared to the individual monolayer film, due to the combination of a relative high hardness with the low friction properties of both layers. The reorientation of MoS2 parallel to the sliding direction also contributed to the enhanced anti-frictional performance at RT. At 400 °C, the reorientation of MoS2 as well as the formation of MoO3 phase were responsible for the lubrication, whilst the hard t-ZrO2 phase promoted abrasion and, consequently, led to increasing wear rate. At 600 °C, the Ag2MoO4 double-metal oxide was the responsible for the low friction and wear-resistance; furthermore, the observed transformation from t-ZrO2 to m-ZrO2, could also have contributed to the better tribological performance.
  • Design and magnetron sputtering of nanomultilayered W2N/Ag-SiNx films: Microstructural insights and optimized self-lubricant properties from room temperature to 500 ◦C
    Publication . Luan, Jing; Kong, Fanlin; Evaristo, Manuel; Fernandes, Filipe; Zhou, Yazhou; Cavaleiro, Albano; Ju, Hongbo; Fernandes, Filipe
    Novel multilayered films were engineered by integrating W2N and Ag-SiNx layers in a multilayer structure to obtain improved hardness and tribological properties. The films were fabricated by alternating magnetron sputtering, depositing 40 nm layers of W2N with varying thickness of Ag-SiNx layers varying in thickness from 4 to 20 nm. The effect of the increase thickness of the Ag-SiNx layers in the films microstructure and tribological properties were accessed. Tribological experiments were conducted at room temperature (RT), 500 °C, and RT-500 °C cycling conditions. The results revealed the production of a multilayered structure comprising single fcc-W2N layers interspersed with dual-phase layers consisting of fcc-Ag and amorphous SiNx phases. Tribological results indicated an improvement in the tribological performance with increase thickness of the Ag-SiNx layer up to 12 nm. The tribo-synergistic/combined action of both W2N and Ag-SiNx layers, along with the presence of layered lubricant tribo-phases of WO3 and Ag2WO4, showcased the pivot role in reducing friction and enhancing wear resistance. The optimized multilayered film, featuring a 12 nm Ag-SiNx layer, demonstrated exceptional tribological properties under temperature-cycling from RT to 500 °C.
  • Exploring tribological characteristics of ZrN-MoSN composite films fabricated via RF magnetron sputtering: Insights from microstructure and performance analysis
    Publication . Luan, Jing; Lu, Hongying; Xu, Junhua; Fernandes, Filipe; Fernandes, Filipe; Evaristo, Manuel; Ma, Bingyang; Xie, Fuxiang; Cavaleiro, Albano; Ju, Hongbo
    Achieving the stringent demands of sustainable tribological industrial applications poses a significant challenge, particular in optimizing the self-lubricant performance of nitride-based films. This paper tackled this challenge by designing and depositing a series of ZrN-MoSN composite films with varying (Mo + S)/Zr ratios, employing RF magnetron sputtering, aimed to enhance the tribological properties through utilizing the high loading capacity of the ZrN matrix and the exceptional self-lubricating attributes of Mo-S-N additives. After conducting thorough investigations on the microstructure, and tribological properties, the results revealed that the dense columnar structured ZrN-MoSN composite films displayed a polycrystalline composition comprising fcc-ZrN and hcp-MoS2 phases, intertwined with amorphous phases of Mo(SN)x and MoS2(N2). (Mo + S)/Zr ratios below 1.08 exhibited a minor impact on the room temperature (RT) tribological properties, while higher ratios led to degradation on RT average friction coefficient (COF) and wear rate (WR). However, the synergistic effect of ZrN matrix and the tribo-phases of layered MoO3 and hard ZrO2 contributed to the significant enhanced 500 °C tribological properties, particularly with an optimized (Mo + S)/Zr ratio of 0.43.
  • Effect of Annealing Heat Treatment on the Composition, Morphology, Structure and Mechanical Properties of the W-S-N Coatings
    Publication . Yaqub, Talha Bin; Al-Rjoub, Abbas; Khalid, Hafiza Ayesha; Yaqoob, Khurram; Fernandes, Filipe; Cavaleiro, Albano
    Alloyed-transition metal dichalcogenide (TMD) coatings have been under investigation as multi-environment lubricants for the past few decades. These coatings display very low coefficient of friction properties at elevated temperatures. Studies on the annealing of these low-friction coatings are missing in the literature. For the first time, in this study, the annealing of the W-S-N dry lubricant coatings was carried out to study its effects on the composition, morphology, crystal structure and hardness of the coatings. The W-S-N coatings were deposited by direct current (DC) reactive magnetron sputtering. The analysis was carried out for as-deposited, 200 °C and 400 °C annealed coatings. The as-deposited coatings have N content in the range of 0–25.5 at. %. The coatings are compact and the densification increased with the increase in N-alloying. All the coatings are crystalline except the highest N-alloyed coating which is X-ray amorphous. A maximum hardness of 8.0 GPa was measured for the coating alloyed with 23 at. % N. Annealing did not affect the composition and morphology of the coatings, while some variations were observed in their crystal structure and hardness. The maximum hardness increased from 8 GPa to 9.2 GPa after 400 °C annealing of the 23 at. % N-alloyed coating.
  • Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphology, structure and temperature-cycling tribological properties
    Publication . Ju, Hongbo; Zhou, Rui; Luan, Jing; Yu, Lihua; Xu, Junhua; Zuo, Bin; Yang, Junfeng; Geng, Yaoxiang; Zhao, Lijun; Fernandes, Filipe
    Nowadays there is the need to avoid the excessive consumption of liquid lubricant oils, as they are harmful to the environment and hard to disposal. Self-lubricant films have been seen as the sustainable solution to achieve a long-term lubrication under high temperature-cycling conditions. In this manuscript, multilayer Mo2N-Ag/SiNx films with a fixed modulation ratio (thickness of Mo2N-Ag to SiNx) of 3:1, with changing modulation period (Λ, thickness of Mo2N-Ag and SiNx) from 8 to 200 nm were produced to achieve an effective balance between the lubricious phase diffusion control and the adequate formation of the low friction tribo-layers. Results showed that a dual-phase of fcc-Mo2N and fcc-Ag co-existed in Mo2N-Ag layers, while the SiNx layer exhibited an amorphous character. Both room temperature (RT) lubricant and wear-resistance properties of the films were improved by increasing Λ from 8 to 64 nm, while a further increase of Λ degraded the wear-resistance properties. The multilayer film at Λ = 64 nm exhibited an excellent RT-500 °C temperature-cycling tribological properties. Mechanical properties and the synergistic effect of both modulation layers were the cause for the improvement of the tribological properties.
  • Vacuum Tribological Properties of W-S-N Coatings Synthesized by Direct Current Magnetron Sputtering
    Publication . Yaqub, Talha Bin; Yaqoob, Khuram; Mukhtar, Amir; Fernandes, Filipe; Bondarev, Andrey; Ferreira, Fabio; Al-Rjoub, Abbas; Cavaleiro, Albano
    This work deals with the investigation of the tribological performance of DC magnetron sputteredW-S-N coatings under vacuum atmosphere, as part of the exploration of multi-environment sliding properties of W-S-N solid lubricants. This study is part of the systematic testing of W-S-N solid lubricants in different environments, especially vacuum, which is often ignored. The trend is to test sliding properties in dry N2 by considering it as replacement of vacuum environment testing. This approach is not appropriate. In this work, a set of coatings was synthesized with N-alloying content in the range of 0–25.5 at.%. A maximum S/W ratio of 1.47 was observed for the pure WSx coating. A maximum hardness of 8.0 GPa was observed for 23 at.% of N-alloying. The coating with the lowest N content (14.6 at.%) displayed the lowest friction, specific wear rate and wear scar depth under vacuum conditions. Despite superior sliding performance at room temperature (35% humidity), 200 C and dry nitrogen conditions, the performance of the WSN12.5 coating deteriorated vacuum environment.
  • The influence of V addition on the structure, mechanical properties, and oxidation behaviour of TiAlSiN coatings deposited by DC magnetron sputtering
    Publication . AL-Rjoub, A.; Yaqub, Talha Bin; Cavaleiro, A.; Fernandes, Filipe
    The influence of V content on the morphology, structure, hardness (H) and reduced Young's modulus (E), adhesion, and oxidation resistance of TiAlSiN coatings is investigated. The coatings were produced by DC reactive magnetron sputtering, with increasing V contents from 0, 4.8 and 11.0 at.%. All coatings exhibit a fcc type structure. The coating with 4.8 at.% of V shows the highest values of H and E, whereas the values are similar for the reference coating and the coating with 11.0 at.% of V. The coatings adhere well to the substrates and show a dense and compact columnar growth extending from the adhesive interlayer to the top surface of the coatings. The dynamic thermal gravimetric oxidation curves reveal that V additions decreases the onset point of oxidation significantly and degrades the oxidation resistance of the coatings. A dual oxide layer is formed on the top surface of the reference coating: an outer porous Ti–Al–O rich layer with plate-like features on the top, which classified to TiO2 (rutile and anatase) and Al2O3 phases, and an inner Ti–Si–O rich layer with Al depletion that identified as mixture of amorphous Si–O and Ti–Si–O protective oxides. The diffusion of V to the top surface governs the oxidation process of the V-containing coatings, i.e. increasing V concentration leads to disrupt the formation of the protective continuous oxide layers easily.