Repository logo
 
Loading...
Profile Picture
Person

Castro Ribeiro, Maria Cristina de

Search Results

Now showing 1 - 10 of 13
  • Educating global engineers with EPS@ISEP: The 'pet tracker' project experience
    Publication . Borzecka, Aleksandra; Fagerstrom, Anton; Costa, Artur; Gasull, Marti Domenech; Malheiro, Benedita; Castro Ribeiro, Maria Cristina De; Silva, Manuel; Caetano, Nídia; Ferreira, Paulo; Guedes, Pedro
    The European Project Semester (EPS) is a one-semester capstone project/internship programme offered to engineering, product design and business undergraduates by 18 European engineering schools. EPS aims to prepare future engineers to think and act globally, by adopting project-based learning and teamwork methodologies, fostering the development of complementary skills and addressing sustainability and multiculturalism. Since 2011, the EPS@ISEP programme offers a set of multidisciplinary projects to multicultural teams of students, so that each team element can bring to the project its previous knowledge and background experience. In the spring of 2013, a team choose to develop a pet tracker to provide pet owners with information regarding the whereabouts of their pets and, above all, to reduce the number of pets lost. After analysing related products, the team decided to add extra features for product differentiation. Combining a triple-axis accelerometer, a low cost GPS receiver and the GSM/GPRS communication technology, the team designed a system providing pet location, tracking, map display and activity monitoring services. This paper describes the development process of the Pet Tracker system, comprising a wearable device for pets and a website for pet owners.
  • Waste to Fungi
    Publication . Winter, Alexander; Justo, Jorge; Silva, Manuel F.; Ferreira, Paulo; Guedes, Pedro; Pedro, Erendiro; Ślasko, Julia; Battaglini, Julien; Faelker, Mäike; Kivipelto, Ronald; Duarte, Abel J.; Malheiro, Benedita; Castro Ribeiro, Maria Cristina De
    This paper describes the journey of a multinational and multidisciplinary team enrolled in the European Project Semester (EPS) at the Instituto Superior de Engenharia do Porto (ISEP) during the spring semester of 2019. The team embraced the idea of repurposing coffee leftovers to cultivate oyster mushrooms and benefited from the background diversity of the team members as well as from newly acquired marketing, sustainability and design ethics skills to consolidate and strengthen the overall feasibility of the project. The project was set to design, develop and test grey oyster mushroom growth kits with an automated monitoring system, using coffee grounds as growing substrate and complying with the applicable regulations and pre-defined requirements. The ulterior aims of the project were to reconnect people with the food they eat and to disseminate sustainable food production processes, which are not only healthy but environmentally friendly. To achieve these goals, the team developed a circular economy business model where grey oyster mushroom growth kits reuse coffee grounds as growing beds and food buckets as containers. The designed growth kits include a controlled fruiting chamber with an integrated monitoring system. This allows easy domestic cultivation, monitoring through a smart phone. Moreover, the proposed solution contemplates information sharing on the mushroom cultivation process, monitoring system and recipes as well as the maintenance of a dedicated discussion forum. Tests have been conducted to test the concept, cultivation process, monitoring system and fruiting chamber from the incubation of mycelium all the way to the harvesting. Results show the feasibility of creating a business based on the devised concept
  • Learning sustainability by developing a solar dryer for microalgae retrieval
    Publication . Malheiro, Benedita; Ribeiro, Maria Cristina; Silva, Manuel; Caetano, Nídia Sá; Ferreira, Paulo; Guedes, Pedro
    The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather events. Transportation is one of the main uses of energy, and its excessive fossil fuel dependency is driving the search for alternative and sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. The process includes harvesting and drying, two energy consuming steps, which are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the deontological ethics, social compromise skills and sustainable development awareness of the students.
  • Escargot Nursery – An EPS@ISEP 2017 Project
    Publication . Borghuis, Lauri; Calon, Benjamin; MacLean, John; Portefaix, Juliette; Quero, Ramon; Duarte, Abel José; Malheiro, Benedita; Castro Ribeiro, Maria Cristina De; Ferreira, Fernando José; Silva, Manuel; Ferreira, Paulo; Guedes, Pedro
    This paper presents the development of an Escargot Nursery by a multinational and multidisciplinary team of 3rd year undergraduates within the framework of EPS@ISEP – the European Project Semester (EPS) offered by the Instituto Superior de Engenharia do Porto (ISEP). The challenge was to design, develop and test a snail farm compliant with the applicable EU directives and the given budget. The Team, motivated by the desire to solve this multidisciplinary problem, embarked on an active learning journey, involving scientific, technical, marketing, sustainable and ethical development studies, brainstorming and decision-making. Based on this project-based learning approach, the Team identified the lack of innovative domestic snail farm products and, consequently, proposed the development of “EscarGO”, a stylish solution for the domestic market. The paper details the proposed design and control system, including materials, components and technologies. This learning experience, which was focussed on the development of multicultural communication, multidisciplinary teamwork, problem-solving and decision-making competencies in students, produced as a tangible evidence the proof of concept prototype of “EscarGO”, an Escargot Nursery designed for families to easily grow snails at home.
  • Vertical Farming—An EPS@ISEP 2018 Project
    Publication . Sevastiadou, Anastasia; Luts, Andres; Pretot, Audrey; Trendafiloski, Mile; Basurto, Rodrigo; Blaszczyk, Szymon; Malheiro, Benedita; Castro Ribeiro, Maria Cristina de; Justo, Jorge Fonseca; Silva, Manuel; Ferreira, Paulo; Guedes, Pedro
    This paper summarises the joint efforts of a multinational group of six undergraduate students cooperating within the European Project Semester (EPS) conducted at the Instituto Superior de Engenharia do Porto (ISEP). The EPS@ISEP initiative, made available as a part of the Erasmus+ international students exchange programme, employs the principles of problem-based learning, facing students with—albeit downscaled—real-life scenarios and tasks they may encounter in their future professional practice. Participation in the project initiative outclasses most of the traditional courses through a wide spawn of its learning outcomes. Participants acquire not only hard skills necessary for an appropriate execution of the project, but also broaden their understanding of the approached problem through detailed scientific, management, marketing, sustainability, and ethics analysis—all in the atmosphere of multicultural and interdisciplinary collaboration. The team under consideration, based on personal preferences and predispositions, chose the topic of vertical farming and, in particular, to design a domestic indoor gardening solution, appropriate for space efficient incubation of plants. The paper portrays the process, from research, analysis, formulation of the idea to the design, development and testing of a minimum viable proof of concept prototype of the “Vereatable” solution.
  • Developing Skills in Engineering Capstone Projects with Low-cost Microcontroller Solutions: The EPS@ISEP Experience
    Publication . Ferreira, Paulo; Malheiro, Benedita; Silva, Manuel; Justo, Jorge; Guedes, Pedro; Duarte, Abel J.; Castro Ribeiro, Maria Cristina de
    The European Project Semester (EPS) project-based learning framework is a multicultural and multidisciplinary one semester engineering capstone programme provided by a network of European Higher Education institutions. Its aim is to prepare 3rd-year undergraduate students to their future professional life, enhancing hard and soft skills and following ethical and sustainable design and development practices. At the School of Engineering of Porto Polytechnic (ISEP) the focus of the EPS programme (EPS@ISEP) is on solving multidisciplinary problems through teamwork, involving engineering, design and business students [1]. The students work in teams of 5 to 6 students, assembled according to the identified Belbin team roles, and also maximizing student cultural and scientific diversity. On the first week each team chooses to solve one of the open-ended multidisciplinary problems on offer. Those projects involve typically some type of automation and control[2]. One of the obstacles these eclectic teams face is the lack of hardware/software skills required to design, assemble and test a microcontroller based systems. To help overcome this situation, the programme syllabus includes an 8-hour intensive "Arduino & Electronics Crash Course" at the beginning of the semester due to its market penetration, low-cost, availability of documentation and support, and soft learning curve. This course has effectively contributed to provide students with the necessary knowledge to design and implement simple control systems, leading to the adoption in multiple EPS@ISEP past projects of the Arduino platform/ecosystem. However, the crescent sophistication of the projects, namely the integration with Internet of Things (IoT) platforms, requires the definition of a new strategy, considering the available hardware/software alternatives. This paper analyses the experience of the EPS@ISEP students regarding the use of microcontroller based platforms in the development of engineering capstone projects, and proposes possible future hardware/software alternatives, both from the technical and pedagogical perspectives.
  • Smart Companion Pillow – An EPS@ISEP 2019 Project
    Publication . Reis, Alexandre Soares dos; Gielen, Elien; Wopereis, Ko; Pasternak, Marcel; Sooäär, Vaido; Schneider, Tobias; Duarte, Abel J.; Malheiro, Benedita; Justo, Jorge; Castro Ribeiro, Maria Cristina de; Silva, Manuel F.; Ferreira, Paulo; Guedes, Pedro
    This paper describes the design and development of a Smart Companion Pillow, named bGuard, designed by a multinational and multidisciplinary team enrolled in the European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) in the spring of 2019. Nowadays, parents spend most of the day at work and become naturally worried about the well-being of their young children, specially babies. The aim of bGuard is to provide a 24-hour remotely accessible baby monitoring service, contributing to reduce parenting stress. The team, based on the survey of related products, as well as on marketing, sustainability, ethics and deontology analyses, developed a remotely interactive Smart Companion Pillow to monitor the baby’s health and room air quality. The collected data, once it is saved on an Internet of Things (IoT) platform, becomes remotely accessible. The bGuard pillow, thanks to its shape, reduces the risk of the baby rolling from back to tummy, lowering the risk of Sudden Infant Death Syndrome (SIDS).
  • Multipurpose Urban Sensing Equipment—An EPS@ISEP 2018 Project
    Publication . Farrag, Mostafa; Marques, Damien; Bagiami, Maria; van der Most, Maarten; Smit, Wouter; Malheiro, Benedita; Castro Ribeiro, Maria Cristina de; Justo, Jorge Fonseca; Silva, Manuel; Ferreira, Paulo; Guedes, Pedro
    This paper describes the development of a Multi-purpose Urban Sensing Equipment, named Billy, designed by a multinational and multidisciplinary team enrolled in the European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP). The project is set to design, develop and test an interactive billboard in compliance with the relevant EU regulation and the allocated budget. The Team benefited from the different background, multidisciplinary skills and the newly acquired skills of the members, like marketing, sustainability and design ethics, in activities both inside and outside of the University. The challenge was to design a multi-purpose urban sensing and displaying equipment to inform citizens of nearby environmental conditions. The Team decided to design a system to monitor and display the temperature, humidity, air pressure and air quality of leisure areas, featured with a proximity detection sensor for energy saving. Billy will not only monitor and display this local information, but also the air quality determined by other billboards placed in other locations, creating a distributed urban sensing network. The system has been successfully prototyped and tested using the ESPduino Wi-Fi enabled micro-controller, different sensors and displays (screen and map-based). The results show not only that the prototype functions according to derived specifications and design, but that the team members were able to learn, together and from each other, how to solve this multidisciplinary problem.
  • Strontium-rich injectable hybrid system for bone regeneration
    Publication . Neves, Nuno; Campos, Bruno B.; Almeida, Isabel F.; Costa, Paulo C.; Cabral, Abel Trigo; Barbosa, Mário A.; Castro Ribeiro, Maria Cristina De
    Current challenges in the development of scaffolds for bone regeneration include the engineering of materials that can withstand normal dynamic physiological mechanical stresses exerted on the bone and provide a matrix capable of supporting cellmigration and tissue ingrowth. The objective of the present workwas to develop and characterize a hybrid polymer–ceramic injectable systemthat consists of an alginatematrix crosslinked in situ in the presence of strontium(Sr), incorporating a ceramic reinforcement in the form of Sr-richmicrospheres. The incorporation of Sr in the microspheres and in the vehicle relies on the growing evidence that Sr has beneficial effects in bone remodeling and in the treatment of osteopenic disorders and osteoporosis. Sr-rich porous hydroxyapatite microspheres with a uniform size and a mean diameter of 555 μmwere prepared, and their compression strength and friability tested. A 3.5% (w/v) ultrapure sodium alginate solution was used as the vehicle and its in situ gelation was promoted by the addition of calcium (Ca) or Sr carbonate and Glucone-δ-lactone. Gelation times varied with temperature and crosslinking agent, being slower for Sr than for Ca, but adequate for injection in both cases. Injectability was evaluated using a device employed in vertebroplasty surgical procedures, coupled to a texture analyzer in compression mode. Compositions with 35%w ofmicrospheres presented the best compromise between injectability and compression strength of the system, the force required to extrude it being lower than 100 N.Micro CT analysis revealed a homogeneous distribution of themicrospheres inside the vehicle, and a mean inter-microspheres space of 220 μm. DMA results showed that elastic behavior of the hybrid is dominant over the viscous one and that the higher storage modulus was obtained for the 3.5%Alg–35%Sr-HAp-Sr formulation.
  • Solar Dehydrator
    Publication . Szabó, Dániel; Justo, Jorge; Silva, Manuel F.; Ferreira, Paulo; Guedes, Pedro; Gillet, Elisa; Vallés, Ignacio; Pereira, João; Keppens, Marie; Krommendijk, Pascal; Duarte, Abel J.; Malheiro, Benedita; Castro Ribeiro, Maria Cristina De
    This paper provides an overview of the development of a solar dehydrator, a project undertaken by a team of six Erasmus students from different countries during the European Project Semester at the Instituto Superior de Engenharia do Porto in the spring of 2019. The main objective of the European Project Semester is to develop teamwork, communication and problem-solving skills through team work and project-based learning. The purpose of the project was to design a sustainable solution to dehydrate and preserve food, build and test the corresponding proof-of-concept prototype, while respecting requirements such as the budget, the use of reusable materials and components or European Union directives. To achieve this goal, the team considered the technological, ethical and deontological, economic and environmental perspectives in the design of the Dryfoo prototype. This paper describes, after a short introduction, the performed research, the development and the testing of the proof-of-concept prototype, as well as the personal outcomes of this learning experience.