Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • An automated maneuver control framework for a remotely operated vehicle
    Publication . Fraga, S. L.; Sousa, J. Borges de; Girard, Anouck; Martins, Alfredo
    An automated maneuver control framework for a remotely operate vehicle (ROV) is presented. This framework entails a three-layered control architecture, a principled approach to design and implementation within the architecture, and hybrid systems design techniques. The control architecture is structured according to the principle of composition of vehicle motions from a minimal set of elemental maneuvers that are designed and verified independently. The principled approach is based on distributed hybrid systems techniques, and spans integrated design, simulation and implementation as the same model is used throughout. Hybrid systems control techniques are used to synthesize the elemental maneuvers and to design protocols, which coordinate the execution of elemental maneuvers within a complex maneuver. The architecture is fault-tolerant by design since it uses verified maneuvers. This work is part of the Inspection of Underwater Structures (IES) project whose main objective is the implementation of a ROV-based system for the inspection of underwater structures
  • Vision-Based Assisted Teleoperation for Inspection Tasks with a Small ROV
    Publication . Costa, Maria J.; Gonçalves, Pedro; Martins, Alfredo; Silva, Eduardo
    It is well-known that ROVs require human intervention to guarantee the success of their assignment, as well as the equipment safety. However, as its teleoperation is quite complex to perform, there is a need for assisted teleoperation. This study aims to take on this challenge by developing vision-based assisted teleoperation maneuvers, since a standard camera is present in any ROV. The proposed approach is a visual servoing solution, that allows the user to select between several standard image processing methods and is applied to a 3-DOF ROV. The most interesting characteristic of the presented system is the exclusive use of the camera data to improve the teleoperation of an underactuated ROV. It is demonstrated through the comparison and evaluation of standard implementations of different vision methods and the execution of simple maneuvers to acquire experimental results, that the teleoperation of a small ROV can be drastically improved without the need to install additional sensors.
  • Multiple robot operations for maritime search and rescue in euRathlon 2015 competition
    Publication . Matos, Aníbal; Martins, Alfredo; Dias, André; Ferreira, Bruno; Almeida, José Miguel; Ferreira, Hugo; Amaral, Guilherme; Figueiredo, André; Almeida, Rui; Silva, Filipe
    This paper presents results of the INESC TEC participation in the maritime environment (both at surface and underwater) integrated in the ICARUS team in the euRathlon 2015 robotics search and rescue competition. These relate to the marine robots from INESC TEC, surface (ROAZ USV) and underwater (MARES AUV) autonomous vehicles participation in multiple tasks such as situation assessment, underwater mapping, leak detection or victim localization. This participation was integrated in the ICARUS Team resulting of the EU funded project aimed to develop robotic tools for large scale disasters. The coordinated search and rescue missions were performed with an initial surface survey providing data for AUV mission planning and execution. A situation assessment bathymetry map, sidescan sonar imaging and location of structures, underwater leaks and victims were achieved, with the global ICARUS team (involving sea, air and land coordinated robots) participating in the final grand Challenge and achieving the second place.