Repository logo
 

Search Results

Now showing 1 - 10 of 17
  • Reserve costs allocation model for energy and reserve market simulation
    Publication . Pinto, Tiago; Gazafroudi, Amin Shokri; Prieto-Castrillo, Francisco; Santos, Gabriel; Silva, Francisco; Corchado, Juan Manuel; Vale, Zita
    This paper proposes a new model to allocate reserve costs among the involved players, considering the characteristics of the several entities, and the particular circumstances at each moment. The proposed model is integrated in the Multi-Agent Simulator of Competitive Electricity Markets (MASCEM), which enables complementing the multi-agent simulation of diverse electricity market models, by including the joint simulation of energy and reserve markets. In this context, the proposed model allows allocating the payment of reserve costs that result from the reserve market. A simulation based on real data from the Iberian electricity market - MIBEL, is presented. Simulation results show the advantages of the proposed model in sharing the reserve costs fairly and accordingly to the different circumstances. This work thus contributes the study of novel market models towards the evolution of power and energy systems by adapting current models to the new paradigm of high penetration of renewable energy generation.
  • Constrained Generation Bids in Local Electricity Markets: A Semantic Approach
    Publication . Santos, Gabriel; Faria, Pedro; Vale, Zita; Pinto, Tiago; Corchado, Juan M.
    he worldwide investment in renewable energy sources is leading to the formation of local energy communities in which users can trade electric energy locally. Regulations and the required enablers for effective transactions in this new context are currently being designed. Hence, the development of software tools to support local transactions is still at an early stage and faces the challenge of constant updates to the data models and business rules. The present paper proposes a novel approach for the development of software tools to solve auction-based local electricity markets, considering the special needs of local energy communities. The proposed approach considers constrained bids that can increase the effectiveness of distributed generation use. The proposed method takes advantage of semantic web technologies, in order to provide models with the required dynamism to overcome the issues related to the constant changes in data and business models. Using such techniques allows the system to be agnostic to the data model and business rules. The proposed solution includes the proposed constraints, application ontology, and semantic rule templates. The paper includes a case study based on real data that illustrates the advantages of using the proposed solution in a community with 27 consumers
  • Ontologies to Enable Interoperability of Multi-Agent Electricity Markets Simulation and Decision Support
    Publication . Santos, Gabriel; Pinto, Tiago; Vale, Zita
    This paper presents the AiD-EM Ontology, which provides a semantic representation of the concepts required to enable the interoperability between multi-agent-based decision support systems, namely AiD-EM, and the market agents that participate in electricity market simulations. Electricity markets’ constant changes, brought about by the increasing necessity for adequate integration of renewable energy sources, make them complex and dynamic environments with very particular characteristics. Several modeling tools directed at the study and decision support in the scope of the restructured wholesale electricity markets have emerged. However, a common limitation is identified: the lack of interoperability between the various systems. This gap makes it impossible to exchange information and knowledge between them, test different market models, enable players from heterogeneous systems to interact in common market environments, and take full advantage of decision support tools. To overcome this gap, this paper presents the AiD-EM Ontology, which includes the necessary concepts related to the AiD-EM multi-agent decision support system, to enable interoperability with easier cooperation and adequate communication between AiD-EM and simulated market agents wishing to take advantage of this decision support tool
  • EPEX ontology: Enhancing agent-based electricity market simulation
    Publication . Santos, Gabriel; Pinto, Tiago; Praça, Isabel; Vale, Zita
    Electricity markets worldwide are complex and dynamic environments with very particular characteristics. The markets' restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources are the main drivers. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This paper proposes the use of ontologies to enable the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. Focusing, namely, on the EPEX electricity market.
  • Multi-agent Systems Society for Power and Energy Systems Simulation
    Publication . Santos, Gabriel; Pinto, Tiago; Vale, Zita
    A key challenge in the power and energy field is the development of decision-support systems that enable studying big problems as a whole. The interoperability between multi-agent systems that address specific parts of the global problem is essential. Ontologies ease the interoperability between heterogeneous systems providing semantic meaning to the information exchanged between the various parties. The use of ontologies within Smart Grids has been proposed based on the Common Information Model, which defines a common vocabulary describing the basic components used in electricity transportation and distribution. However, these ontologies are focused on utilities’ needs. The development of ontologies that allow the representation of diverse knowledge sources is essential, aiming at supporting the interaction between entities of different natures, facilitating the interoperability between these systems. This paper proposes a set of ontologies to enable the interoperability between different types of agent-based simulators, namely regarding electricity markets, the smart grid, and residential energy management. A case study based on real data shows the advantages of the proposed approach in enabling comprehensive power system simulation studies.
  • TOOCC: Enabling heterogeneous systems interoperability in the study of energy systems
    Publication . Teixeira, Brígida; Silva, Francisco; Pinto, Tiago; Santos, Gabriel; Praça, Isabel; Vale, Zita
    The environmental impact and the scarcity of limited fossil fuels led to the need of investment in energy based on renewable sources. This has driven Europe to implement several policies that changed the energy market's paradigm, namely the incentive to microgeneration. The penetration of energy sources from intermittent nature has increased the unpredictability of the system, which makes simulation and analysis tools essential in order to provide decision support to entities in this sector. This paper presents the Tools Control Center (TOOCC) as a solution to increase the interoperability between heterogeneous agent-based systems, in the energy field. The proposed approach acts as a facilitator in the interaction between different systems through the usage of ontologies, allowing them to communicate in the same language. To understand the real applicability of this tool, a case study is presented concerning the interaction between several systems, with the purpose of enabling the energy resource scheduling of a microgrid, and the reaction of a house managed by a house management system.
  • Iberian electricity market ontology to enable smart grid market simulation
    Publication . Santos, Gabriel; Pinto, Tiago; Praça, Isabel; Vale, Zita
    Several approaches have been proposed to enhance the potential of distributed generation (DG). Some of the most prominent solutions include the aggregation of DG units and other players, culminating in the concept of and Smart Grid (SG). In this context, several simulation tools arose to study and test the new market mechanisms. However, all of these simulators are closed and centred in their object of study, neglecting the potential advantages of interoperating with other systems from the same domain. This work proposes the use of ontologies for systems interoperability in the power and energy systems domain. The ontologies have been developed and implemented in MASCEM and MASGriP - multi-agent simulators of electricity markets, and SG operation and management,respectively; thus enabling joint electricity market and SG simulations.
  • Application Ontology for Multi-Agent and Web-Services’ Co-Simulation in Power and Energy Systems
    Publication . Teixeira, Brígida; Santos, Gabriel; Pinto, Tiago; Vale, Zita; Corchado, Juan M.
    Power and energy systems are very complex, and several tools are available to assist operators in their planning and operation. However, these tools do not allow a sensitive analysis of the impact of the interaction between the different sub-domains and, consequently, in obtaining more realistic and reliable results. One of the key challenges in this area is the development of decision support tools to address the problem as a whole. Tools Control Center - TOOCC - proposed and developed by the authors, enables the co-simulation of heterogeneous systems to study the electricity markets, the operation of the smart grids, and the energy management of the final consumer, among others. To this end, it uses an application ontology that supports the definition of scenarios and results comparison, while easing the interoperability among the several systems. This paper presents the application ontology developed. The paper addresses the methodology used for its development, its purpose and requirements, and its concepts, relations, facets and instances. The ontology application is illustrated through a case study, where different requirements are tested and demonstrated. It is concluded that the proposed application ontology accomplishes its goals, as it is suitable to represent the required knowledge to support the interoperability among the different considered systems.
  • Multi-Agent Decision Support Tool to Enable Interoperability among Heterogeneous Energy Systems
    Publication . Teixeira, Brígida; Pinto, Tiago; Silva, Francisco; Santos, Gabriel; Praça, Isabel; Vale, Zita
    Worldwide electricity markets are undergoing a major restructuring process. One of the main reasons for the ongoing changes is to enable the adaptation of current market models to the new paradigm that arises from the large-scale integration of distributed generation sources. In order to deal with the unpredictability caused by the intermittent nature of the distributed generation and the large number of variables that contribute to the energy sector balance, it is extremely important to use simulation systems that are capable of dealing with the required complexity. This paper presents the Tools Control Center (TOOCC), a framework that allows the interoperability between heterogeneous energy and power simulation systems through the use of ontologies, allowing the simulation of scenarios with a high degree of complexity, through the cooperation of the individual capacities of each system. A case study based on real data is presented in order to demonstrate the interoperability capabilities of TOOCC. The simulation considers the energy management of a microgrid of a real university campus, from the perspective of the network manager and also of its consumers/producers, in a projection for a typical day of the winter of 2050.
  • BRICKS: Building’s reasoning for intelligent control knowledge-based system
    Publication . Santos, Gabriel; Vale, Zita; Faria, Pedro; Gomes, Luis
    Building energy management systems have been largely implemented, focusing on specific domains. When installed together, they lack interoperability to make them work correctly and to achieve a centralized user interface. The Building's Reasoning for Intelligent Control Knowledge-based System (BRICKS) overcomes these issues by developing an interoperable building management system able to aggregate different interest domains. It is a context-aware semantic rule-based system for intelligent management of buildings' energy and security. Its output can be a set of alarms, notifications, or control actions to take. BRICKS itself, and its features are the innovative contribution of the present paper. It is very important for buildings' energy management, namely in the scope of demand response programs. In this paper, it is shown how semantics is used to enable the knowledge exchange between different devices, algorithms, and models, without the need for reprogramming the system. A scenario is deployed in a real building for demonstration.