Repository logo
 
Loading...
Profile Picture
Person

Stawiński, Wojciech

Search Results

Now showing 1 - 3 of 3
  • Sustainable adsorbents formed from by-product of acid activation of vermiculite and leached-vermiculite-LDH hybrids for removal of industrial dyes and metal cations
    Publication . Stawiński, Wojciech; Węgrzyn, Agnieszka; Mordarski, Grzegorz; Skiba, Michał; Freitas, Olga; Figueiredo, Sónia
    Hydrotalcite-like layered double hydroxide (LDH) materials were synthesized from liquid waste by-product produced during acid activation of vermiculite (raw (W) and expanded (Ve)), and by combining the waste with the activated mineral, novel hybrid vermiculite-hydrotalcite-like materials were obtained in one-pot synthesis. Batch system adsorption experiments were performed on fresh and calcined (at 450 °C) materials using two anionic dyes (Congo Red - CR, and Reactive Red 184 - R), a cationic dye (Astrazon Red - AR), and Cu2+. Calcination significantly increased the materials' adsorption capacities for all the pollutants. The highest adsorption capacities of the LDH derived from W were 289 ± 2, 137 ± 2, 38.2 ± 0.6 and 64 ± 2 mg g−1, while for the ones derived from Ve were 214 ± 2, 119.5 ± 0.3, 35.9 ± 0.7 and 66 ± 3 mg g−1 for CR, R, AR and Cu2+, respectively. The hybrids obtained from W attained removal levels of 238 ± 3, 111 ± 2, 44 ± 1 and 70 ± 1 mg g−1 and their counterparts derived from Ve reached 84 ± 1, 34.1 ± 0.5, 43 ± 2 and 75 ± 1 mg g−1 for CR, R, AR and Cu2+, respectively. Strong synergic effect on adsorption was observed in the hybrid materials, especially in these derived from Ve. These adsorbents had higher (up to 400%) adsorption capacities than theoretical ones prepared by mixing ex-situ appropriate amounts of activated vermiculite and LDH. All the materials were characterized by XRD, SEM-EDS, and ATR techniques. The proposed procedure is a sustainable approach to clay minerals valorization and my open new possibilities in fields such as wastewater treatment or catalysis.
  • Study of adsorptive materials obtained by wet fine milling and acid activation of vermiculite
    Publication . Węgrzyn, Agnieszka; Stawiński, Wojciech; Freitas, Olga; Komędera, Kamila; Błachowski, Artur; Jęczmionek, Łukasz; Dańko, Tomasz; Mordarski, Grzegorz; Figueiredo, Sónia
    Wet fine milling, as a pretreatment step to acid activation of vermiculite, was applied in order to decrease the environmental impact of the procedure commonly used to increase the mineral's adsorption capacity. Milling caused fragmentation of the material and several changes in its structure: edges of the flocks became frayed, the surface cracked, cation exchange capacity (CEC) increased, and most of the iron in oligonuclear and bulk form was removed. At the same time the specific surface area, crystallinity, chemical composition and adsorption capacity did not change significantly. Fine ground material was more susceptible to acid activation, which caused a decrease in the crystallinity and CEC, development of meso- and microporosity, an increase in the total volume of pores, in the specific surface and external surface areas. Micropores were developed faster in lower acid concentrations in the rough ground material, while the external surface area and total pores volume increased faster in the fine ground vermiculite. The latter material also had a higher CEC. Application of 0.5 mol L− 1 HNO3 to rough ground vermiculite did not change its adsorption capacity, however it changed from 55 ± 7 to 110 ± 8 mg g− 1 when the material was fine ground. The optimal treatment conditions for both materials were obtained for 1.0 mol L− 1 HNO3, however the adsorption capacity for the fine ground vermiculite increased more (i.e., from 55 ± 7 to 136 ± 7 mg g− 1) than for its rough ground counterpart (i.e., 52 ± 7 to 93 ± 7 mg g− 1). Concentrations higher than 1.0 mol L− 1 resulted in deterioration of the adsorption capacities in both cases. Considering all the experimental outcomes, it can be concluded that the environmental impact of acid activation of vermiculite may be diminished by application of fine grinding of the material before the chemical activation process. Such treatment resulted in higher adsorption capacity at a given acid concentration compared to the rough ground material.
  • Interaction between adsorbed molecules and tailor made large chelating ligands grafted on SBA-15 studied by means of thermoporometry
    Publication . Węgrzyn, Agnieszka; Radko, Marcelina; Majda, Dorota; Stawiński, Wojciech; Skiba, Michał; Cież, Dariusz
    Modified mesoporous silicas were examined as adsorbents for efficient removal of model pollutants from wastewaters. Functionalized SBA-15 materials for capture of cationic pollutants such as metal cations and anionic dyes were obtained using post-synthesis grafting method. Large organic ligands containing acetyloacetone, 2-aminopyridine, 2-aminothiazole and 2-aminobenzothiazole groups were incorporated into the adsorbents' structure. The adsorption capacities reached levels of 38.6, 43.1, 64.3, 68.6 and 88.9 mg g−1 for Cu2+, Rose Bengal, Congo Red, Levafix Amber CA gran and Methyl Orange, respectively. Moreover, the adsorption efficiency depended on a type of the model molecule and a type of the surface chelating group. The pores' size and the pores' volume of the hybrid materials before and after adsorption was determined in hydrated state using thermoporometry. For the first time, by means of this methodology, it was possible to propose a model of interactions between the adsorbed molecules and the grafted organosilanes. Adsorption of organic dyes resulted in most cases in formation of J-aggregates.