Loading...
34 results
Search Results
Now showing 1 - 10 of 34
- Aspectos de aprendizagem em optimizaçãoPublication . Pereira, Ivo; Madureira, Ana MariaA optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.
- MASDSheGATS – Scheduling System for Dynamic Manufacturing EnvironmentsPublication . Madureira, Ana Maria; Santos, Joaquim; Pereira, IvoThis chapter addresses the resolution of scheduling in manufacturing systems subject to perturbations. The planning of Manufacturing Systems involves frequently the resolution of a huge amount and variety of combinatorial optimisation problems with an important impact on the performance of manufacturing organisations. Examples of those problems are the sequencing and scheduling problems in manufacturing management, routing and transportation, layout design and timetabling problems.
- Data Extraction Tool to Analyse, Transform and Store Real Data from Electricity MarketsPublication . Pereira, Ivo; Sousa, Tiago; Praça, Isabel; Freitas, Ana; Pinto, Tiago; Vale, Zita; Morais, HugoThe study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.
- Scheduling a cutting and treatment stainless steel sheet line with self-management capabilitiesPublication . Madureira, Ana Maria; Pereira, Ivo; Sousa, Nelson; Ávila, Paulo; Bastos, JoãoWith advancement in computer science and information technology, computing systems are becoming increasingly more complex with an increasing number of heterogeneous components. They are thus becoming more difficult to monitor, manage, and maintain. This process has been well known as labor intensive and error prone. In addition, traditional approaches for system management are difficult to keep up with the rapidly changing environments. There is a need for automatic and efficient approaches to monitor and manage complex computing systems. In this paper, we propose an innovative framework for scheduling system management by combining Autonomic Computing (AC) paradigm, Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems
- Self-managing agents for dynamic scheduling in manufacturingPublication . Madureira, Ana Maria; Santos, Joaquim; Pereira, IvoThe main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.
- Ant colony system based approach to single machine scheduling problems: weighted tardiness scheduling problemPublication . Madureira, Ana Maria; Falcão, Diamantino; Pereira, IvoThe paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.
- Case-based reasoning for self-optimizing behaviorPublication . Pereira, Ivo; Madureira, Ana MariaIn this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.
- Auto-parametrização de meta-heurísticas para escalonamento dinâmicoPublication . Pereira, Ivo; Madureira, Ana MariaEste artigo aborda o problema da parametrização de Técnicas de Optimização Inspiradas na Biologia (BIT - Biological Inspired Optimization Techniques), também conhecidas como Meta-heurísticas, considerando a importância que estas técnicas têm na resolução de situações de mundo real, sujeitas a perturbações externas. É proposto um módulo de aprendizagem com o objectivo de permitir que um Sistema Multi-Agente (SMA) para Escalonamento seleccione automaticamente uma Metaheurística e escolha a parametrização a usar no processo de optimização. Para o módulo de aprendizagem foi usado o Raciocínio baseado em Casos (RBC), permitindo ao sistema aprender a partir da experiência acumulada na resolução de problemas similares. Através da análise dos resultados obtidos é possível concluir acerca das vantagens da sua utilização.
- MASDScheGATS: a prototype system for dynamic schedulingPublication . Madureira, Ana Maria; Santos, Joaquim; Pereira, IvoA manufacturing system has a natural dynamic nature observed through several kinds of random occurrences and perturbations on working conditions and requirements over time. For this kind of environment it is important the ability to efficient and effectively adapt, on a continuous basis, existing schedules according to the referred disturbances, keeping performance levels. The application of Meta-Heuristics and Multi-Agent Systems to the resolution of this class of real world scheduling problems seems really promising. This paper presents a prototype for MASDScheGATS (Multi-Agent System for Distributed Manufacturing Scheduling with Genetic Algorithms and Tabu Search).
- Meta-heuristics self-configuration for schedulingPublication . Madureira, Ana Maria; Fonseca, Nuno; Pereira, IvoScheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.
