Repository logo
 

ISEP – GRAQ – Artigos

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 599
  • Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications
    Publication . Silva, Aurora; Cassani, Lucia; Grosso, Clara; Garcia-Oliveira, Paula; Morais, Stephanie; Echave, Javier; Carpena, Maria; Xiao, Jianbo; Barroso, M. Fátima; Simal-Gandara, Jesus; Prieto, Miguel A.
    The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
  • ESG approach in the valorization of cocoa (Theobroma cacao) by-products by subcritical water: Application in the cosmetic industry
    Publication . Švarc-Gajić, Jaroslava; Brezo-Borjan, Tanja; Dzedik, Valentin; Rodrigues, Francisca; Morais, Simone; Delerue-Matos, Cristina
    In this research valorization potentials of cocoa hull extracts in cosmetic industry, following Environmental, Social, and Governance (ESG) criteria, have been investigated and reported, presenting increased value of this biowaste. The extracts of cocoa hull obtained by subcritical water were characterized in respect to chemical composition and certain bioactive properties, and were used to develop functional cosmetic formulation. In this work cocoa hull of cocoa beans originating from different geographical locations (Ivory Coast, Ghana, Togo, Grenada) were extracted by subcritical water to obtain functional extracts rich in valuable compounds. The extracts were characterized in respect to their total proteins (10–27%), total phenols (37–45 mg GAE/g) and total flavonoids (14–21 mg RE/g) contents. In addition, the minerals K (41–60 mg/100 g), Na (0.78–1.17 mg/100 g), and Ca (2.47–5.94 mg/100 g) were also quantified. Antiradical activity against DPPH (IC50 ∼ 11–13 μg/ml) and ABTS (IC50 ∼ 7–9 μg/ml) radicals, as well as total antioxidant activity (∼14–20 mg EAK/100 g DE), were determined and compared for all extracts. The extract with the highest antioxidant and antiradical activity was used for the formulation of a functional cosmetic product – a day cream with sun protective properties and added qualities. The prepared facial cream was analysed in respect to basic quality parameters for cosmetic products, proving the safety of the newly developed product based on subcritical water extracts of cocoa hull. The application of subcritical water extraction, as a green technology, can significantly enhance the ESG development in the cosmetic industry.
  • Nanostructured label–free electrochemical immunosensor for detection of a Parkinson's disease biomarker
    Publication . Carneiro, Pedro; Loureiro, Joana A.; Delerue-Matos, Cristina; Morais, Simone; Pereira, Maria do Carmo
    Aggregation of α-synuclein has been recognized as a critical event in the pathogenesis of Parkinson's disease whose prevalence is increasing with great socio-economic challenges for future generations. Here, we developed a sensitive and specific electrochemical immunosensor for the detection and quantification of this biomarker, based on the voltammetric study of a redox indicator signal, which decreases upon the analyte recognition by the antibody due to the electronic resistance increase. The proposed immunosensor is based on a screen-printed carbon electrode modified in a layer-by-layer approach, which through extensive characterization led to the successful nanostructuration of the transducer, through the drop-cast of 3.0 μL of a 0.1 mg mL−1 single-walled carbon nanotubes suspension followed by electrodeposition of gold nanoparticles in a 3 mM HAuCl4 solution under a −0.2 V potential for 150 s. Monoclonal antibodies were immobilized on the gold nanoparticles surface through chemical modification at an optimal concentration of 200 μg mL−1. Using the proposed immunosensor, α-synuclein was detected in the range of 0.01–10 ng mL−1 with a 4.1 and 12.6 pg mL−1 limits of detection and quantification, respectively. Recovery values of 96.7, 106.2 and 102.9% were attained for the tested concentrations spiked in fetal bovine serum while also presenting excellent specificity and stability throughout one month. The nanostructured immunosensor provided a great interface for electronic transduction and biological recognition events, which enabled fast, sensitive and specific detection of α-synuclein while being based on a simple and inexpensive technology requiring small sample volumes, crucial characteristics for application in point-of-care testing.
  • Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects
    Publication . Oliveira, Marta; Costa, Solange; Vaz, Josiana; Fernandes, Adília; Slezakova, Klara; Delerue-Matos, Cristina; Teixeira, João Paulo; Carmo Pereira, Maria; Morais, Simone
    Firefighters represent one of the riskiest occupations, yet due to the logistic reasons, the respective exposure assessment is one of the most challenging. Thus, this work assessed the impact of firefighting activities on levels of urinary monohydroxyl-polycyclic aromatic hydrocarbons (OHPAHs; 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, 3-hydroxybenzo(a)pyrene) and genotoxic/oxidative-effect biomarkers (basal DNA and oxidative DNA damage) of firefighters from eight firehouses. Cardiac frequency, blood pressure and arterial oxygen saturation were also monitored. OHPAHs were determined by liquid-chromatography with fluorescence detection, while genotoxic/oxidative-effect biomarkers were assessed by the comet assay. Concentrations of total OHPAHs were up to 340% higher (p ≤ 0.05) in (non-smoking and smoking) exposed workers than in control subjects (non-smoking and non-exposed to combat activities); the highest increments were observed for 1-hydroxynaphthalene and 1-hydroxyacenaphthene (82–88% of ∑OHPAHs), and for 2-hydroxyfluorene (5–15%). Levels of biomarker for oxidative stress were increased in non-smoking exposed workers than in control group (316%; p ≤ 0.001); inconclusive results were found for DNA damage. Positive correlations were found between the cardiac frequency, ∑OHPAHs and the oxidative DNA damage of non-smoking (non-exposed and exposed) firefighters. Evidences were raised regarding the simultaneous use of these biomarkers for the surveillance of firefighters’ health and to better estimate the potential short-term health risks.
  • Association of 3-Phenoxybenzoic Acid Exposure during Pregnancy with Maternal Outcomes and Newborn Anthropometric Measures: Results from the IoMum Cohort Study
    Publication . Guimarães, Juliana; Bracchi, Isabella; Pinheiro, Cátia; Moreira, Nara Xavier; Coelho, Cláudia Matta; Pestana, Diogo; Prucha, Maria do Carmo; Martins, Cristina; Domingues, Valentina F.; Delerue-Matos, Cristina; Dias, Cláudia C.; Azevedo, Luís Filipe R.; Calhau, Conceição; Leite, João Costa; Ramalho, Carla; Keating, Elisa; Fernandes, Virgínia Cruz
    The aims of this study were to characterize the exposure of pregnant women living in Portugal to 3-phenoxybenzoic acid (3-PBA) and to evaluate the association of this exposure with maternal outcomes and newborn anthropometric measures. We also aimed to compare exposure in summer with exposure in winter. Pregnant women attending ultrasound scans from April 2018 to April 2019 at a central hospital in Porto, Portugal, were invited to participate. Inclusion criteria were: gestational week between 10 and 13, confirmed fetal vitality, and a signature of informed consent. 3-PBA was measured in spot urine samples by gas chromatography with mass spectrometry (GC-MS). The median 3-PBA concentration was 0.263 (0.167; 0.458) μg/g creatinine (n = 145). 3-PBA excretion was negatively associated with maternal pre-pregnancy body mass index (BMI) (p = 0.049), and it was higher during the summer when compared to winter (p < 0.001). The frequency of fish or yogurt consumption was associated positively with 3-PBA excretion, particularly during the winter (p = 0.002 and p = 0.015, respectively), when environmental exposure is low. Moreover, 3-PBA was associated with levothyroxine use (p = 0.01), a proxy for hypothyroidism, which could be due to a putative 3-PBA—thyroid hormone antagonistic effect. 3-PBA levels were not associated with the anthropometric measures of the newborn. In conclusion, pregnant women living in Portugal are exposed to 3-PBA, particularly during summer, and this exposure may be associated with maternal clinical features.
  • Development and Characterization of Functional Cookies Enriched with Chestnut Shells Extract as Source of Bioactive Phenolic Compounds
    Publication . Pinto, Diana; Moreira, Manuela M.; Vieira, Elsa F.; Švarc-Gajić, Jaroslava; Vallverdú-Queralt, Anna; Brezo-Borjan, Tanja; Delerue-Matos, Cristina; Rodrigues, Francisca
    Chestnut (Castanea sativa) shells (CSs), an undervalued agro-industrial biowaste, have arisen as a source of bioactive compounds with promising health-promoting effects. This study attempted, for the first time, to develop a functional food, namely cookies, using a CS extract obtained by an eco-friendly technology (subcritical water extraction). The cookies were characterized regarding their nutritional composition, total phenolic and flavonoid contents (TPC and TFC, respectively), antioxidant/antiradical activities, phenolic profile, and sensory evaluation. The results demonstrated that the CS-extract-enriched cookies were mainly composed of carbohydrates (53.92% on dry weight (dw)), fat (32.62% dw), and fiber (5.15% dw). The phenolic profile outlined by HPLC-PDA revealed the presence of phenolic acids, flavonoids, and hydrolysable tannins, attesting to the high TPC and TFC. The in vitro antioxidant/antiradical effects proved the bioactivity of the functional cookies, while the sensory evaluation unveiled excellent scores on all attributes (≥6.25). The heatmap diagram corroborated strong correlations between the TPC and antioxidant/antiradical properties, predicting that the appreciated sensory attributes were closely correlated with high carbohydrates and phenolic compounds. This study encourages the sustainable recovery of antioxidants from CSs and their further employment as an active nutraceutical ingredient in functional cookies.
  • Appraisal of a new potential antioxidants-rich nutraceutical ingredient from chestnut shells through in-vivo assays – A targeted metabolomic approach in phenolic compounds
    Publication . Pinto, Diana; Almeida, Andreia; López-Yerena, Anallely; Pinto, Soraia; Sarmento, Bruno; Lamuela-Raventós, Rosa; Vallverdú-Queralt, Anna; Delerue-Matos, Cristina; Rodrigues, Francisca
    Chestnut (Castanea sativa) shells (CSS) are a source of bioactive compounds with well demonstrated in-vitro antioxidant properties. Nevertheless, no in-vivo studies have already evaluated this effect. This study evaluated the effects of the oral daily administration of an eco-friendly CSS extract (50 and 100 mg/kg per body weight (b. w.)) to rats regarding in-vivo antioxidant activity, glucose and lipids levels, and metabolomic profiling of poly- phenols by LC-ESI-LTQ-Orbitrap-MS. The results demonstrated the in-vivo antioxidant properties in the animals liver, kidney and blood serum, as well as protective effects against hemolysis and rising of blood glucose and lipids levels. New insights on metabolomic profiling of polyphenols proved their absorption and further biotransformation by phase I (hydrogenation and hydroxylation) and II reactions (glucuronidation, methylation and sulfation). This is the first study that attempted to validate a novel nutraceutical ingredient extracted from CSS by in-vivo assays, corroborating the outcomes screened by in-vitro assays
  • Biomonitoring of firefighting forces: a review on biomarkers of exposure to health-relevant pollutants released from fires
    Publication . Barros, Bela; Oliveira, Marta; Morais, Simone
    Occupational exposure as a firefighter has recently been classified as a carcinogen to humans by International Agency for Research on Cancer (IARC). Biomonitoring has been increasingly used to characterize exposure of firefighting forces to contaminants. However, available data are dispersed and information on the most relevant and promising biomarkers in this context of firefighting is missing. This review presents a comprehensive summary and critical appraisal of existing biomar-kers of exposure including volatile organic compounds such as polycyclic aromatic hydrocarbons, several other persistent other organic pollutants as well as heavy metals and metalloids detected in biological fluids of firefighters attending different fire scenarios. Urine was the most characterized matrix, followed by blood. Firefighters exhaled breath and saliva were poorly evaluated. Overall, biological levels of compounds were predominantly increased in firefighters after participation in firefighting activities. Biomonitoring studies combining different biomarkers of exposure and of effect are currently limited but exploratory findings are of high interest. However, biomonitoring still has some unresolved major limitations since reference or recommended values are not yet established for most biomarkers. In addition, half-lives values for most of the biomarkers have thus far not been defined, which significantly hampers the design of studies. These limitations need to be tackled urgently to improve risk assessment and support implementation of better more effective preventive strategies.
  • The simpler the better: Highly sensitive 17α-ethinylestradiol sensor based on an unmodified carbon paper transducer
    Publication . Torrinha, Álvaro; Carneiro, Pedro; Dias, Diana; Delerue-Matos, Cristina; Morais, Simone
    The remarkable features of a carbon fiber paper sensor (CP) were employed for detection of the estrogenic hormone 17α-ethinylestradiol (EE2), considered a contaminant of emerging concern due to its potential ecotoxicity and widespread in the aquatic ecosystems. In this work, an unpreceded CP pre-treatment study was conducted with the (Il)-hexacyanoferrate(III) ion pair, however a bare sensor without pre-treatment revealed higher efficiency on the oxidation of EE2 compared to a chemical and electrochemical pre-treated CP and a gold nanoparticles modified CP, being thus selected for EE2 determinations. The analytical conditions were thoroughly optimized in terms of electrolyte pH (pH 7), differential pulse voltammetry parameters (modulation time 0.003 s, amplitude 0.09 V, interval time 0.1 s and step potential 0.01 V), and analyte preconcentration potential (0.4 V) and time (180 s). The hormone can be determined by the CP in a wide linear range from 0.1 to 1000 nM, achieving a detection limit of 0.14 ± 0.005 nM and an outstanding sensitivity of 1636 ± 232 μA μM−1 cm−2 in the lowest linear zone (0.1–1 nM). The sensor was validated in river water and fish reaching good recoveries (91.2 ± 4.6 to 109.0 ± 7.1%), reproducibility and repeatability. Moreover, the sensor showed high selectivity to EE2 in the presence of several potential interfering compounds and frequently prescribed drugs, though it could not discriminate the similar hormone, 17β-estradiol, being the total concentration obtained in this case. CP-based sensors emerge as efficient electroanalytical tools, suggesting that modification of the surface may not always be beneficial in terms of sensitivity
  • Influence of temperature on the subcritical water extraction of Actinidia arguta leaves: A screening of pro-healthy compounds
    Publication . Silva, Ana Margarida; Luís, Ana Sofia; Moreira, Manuela M.; Ferraz, Ricardo; Brezo-Borjan, Tanja; Švarc-Gajić, Jaroslava; Costa, Paulo C.; Delerue-Matos, Cristina; Rodrigues, Francisca
    Actinidia arguta is a species disseminated in Europe and classified by the Chinese Herbal Medicine as a medicinal plant. The fruit (kiwiberry) has been extensively exploited for multiple purposes, while leaves where discarded. The objective of this study was to evaluate the optimal Subcritical Water Extraction (SWE) temperature (110 °C - 160 °C) of antioxidants and polyphenols from A. arguta leaves. The optimal temperature of extraction was 123 °C, revealing the highest phenolic and flavonoid contents and good scavenging efficiencies against HOCl (IC50 = 17.06 μg/mL) and O2●- (IC50 = 335.2 μg/mL), without toxicity on intestinal cells. The phenolic profile was characterized by high amounts of phenolic acids (e.g., gallic acids), flavanols (catechin) and flavonols (e.g., quercetin-3-O-galactoside). This work allows to conclude that SWE can be a useful extraction technique for the recovery of polyphenolics from A. arguta leaves