ISEP – LSA – Comunicações em eventos científicos
Permanent URI for this collection
Browse
Browsing ISEP – LSA – Comunicações em eventos científicos by Title
Now showing 1 - 10 of 57
Results Per Page
Sort Options
- 6D Visual Odometry with Dense Probabilistic Egomotion EstimationPublication . Silva, Hugo Miguel; Bernardino, Alexandre; Silva, EduardoWe present a novel approach to 6D visual odometry for vehicles with calibrated stereo cameras. A dense probabilistic egomotion (5D) method is combined with robust stereo feature based approaches and Extended Kalman Filtering (EKF) techniques to provide high quality estimates of vehicle’s angular and linear velocities. Experimental results show that the proposed method compares favorably with state-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
- Algae and Fish Farming: An EPS@ISEP 2022 ProjectPublication . Blomme, Rose-Farah; Domissy, Zoé; Dylik, Zuzanna; Hidding, Thomas; Röhe, Alina; Duarte, Abel J.; BENEDITA CAMPOS NEVES MALHEIRO, MARIA; JUSTO, Jorge; Ferreira, Paulo; Guedes, Pedro; Castro Ribeiro, Maria Cristina de; Silva, Manuel; Auer, Michael E.; Rüütmann, TiiaThe European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) is a capstone engineering design program where students, organised in multidisciplinary and multicultural teams, create a solution for a proposed problem, bearing in mind ethical, sustainability and market concerns. The project proposals are usually aligned with the United Nations Sustainable Development Goals (SDG). New sustainable food production methods are essential to cope with the continuous population growth and aligned with SDG2 and SDG12. In this context, this paper describes the research and work done by a team of Erasmus students enrolled in EPS@ISEP during the spring of 2022. Since sustainable algae farming can be a suitable source of food, the team's goal was the design and develop a proof-of-concept prototype, named GREEN·flow, of a symbiotic aquaponic system to farm algae and fish. The smart GREEN·flow concept comprises a modular structure and an app for control and supervision. The proposed design was driven by state-of-the-art research, targeted to a specific market niche based on a market analysis, and considering sustainability and ethics concerns, all of which are described in this manuscript. A proof-of-concept prototype was built and tested to verify that it worked as intended.
- Analysis and Visualisation of Crowd-sourced Tourism DataPublication . Leal, Fátima; Dias, Joana Matos; Malheiro, Benedita; Burguillo, Juan CarlosThe tourist behaviour has changed significantly over the last decades due to technological advancement (e.g., ubiquitous access to the Web) and Web 2.0 approaches (e.g., Crowdsourcing). Tourism Crowdsourcing includes experience sharing in the form of ratings and reviews (evaluation-based), pages (wiki-based), likes, posts, images or videos (social-network-based). The main contribution of this paper is a tourist-centred off-line and on-line analysis, using hotel ratings and reviews, to discover and present relevant trends and patterns to tourists and businesses. On the one hand, online, we provide a list of the top ten hotels, according to the user query, ordered by the overall rating, price and the ratio between the positive and negative Word Clouds reviews. On the other hand, off-line, we apply Multiple Linear Regression to identify the most relevant ratings that influence the hotel overall rating, and generate hotel clusters based on these ratings.
- Application of Visual-Inertial SLAM for 3D Mapping of Underground EnvironmentsPublication . Ferreira, António Bernardo; Almeida, José Miguel; Silva, EduardoThe underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
- Aquaponics System - An EPS@ISEP 2014 Spring ProjectPublication . Llauradó, Ana Mesas; Docherty, Arlene; Méry, Gwénaël; Sokolowska, Natalia; Keane, Sean; Duarte, Abel José; Malheiro, Benedita; Ribeiro, Maria Cristina; Ferreira, Fernando José; Silva, Manuel; Ferreira, Paulo; Guedes, PedroThe goal of this project, one of the proposals of the EPS@ISEP 2014 Spring, was to develop an Aquaponics System. Over recent years Aquaponics systems have received increased attention due to its possibilities in helping reduce strain on resources within 1st and 3rd world countries. Aquaponics is the combination of Hydroponics and Aquaculture and mimics a natural environment in order to successfully apply and enhance the understanding of natural cycles within an indoor process. By using this knowledge of natural cycles it was possible to create a system with the capabilities similar to that of a natural environment with the benefits of electronic adaptions to enhance the overall efficiency of the system. The multinational team involved in its development was composed of five students, from five countries and fields of study. This paper covers their solution, involving overall design, the technology involved and the benefits it could bring to the current market. The team was able to achieve the final rendered Computer Aided Design (CAD) drawings, successfully performed all the electronic testing, and designed a solution under budget. Furthermore, the solution presented was deeply studied from the sustainability viewpoint and the team also developed a product specific marketing plan. Finally, the students involved in this project obtained new knowledge and skills.
- Autonomous bathymetry for risk assessment with ROAZ robotic surface vehiclePublication . Ferreira, H.; Almeida, C.; Martins, A.; Almeida, J.; Dias, N.; Dias, A.; Silva, E.The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.
- Balancing Plug-In for Stream-Based ClassificationPublication . de Arriba-Pérez, Francisco; García-Méndez, Silvia; Leal, Fátima; Malheiro, Benedita; Burguillo-Rial, Juan CarlosThe latest technological advances drive the emergence of countless real-time data streams fed by users, sensors, and devices. These data sources can be mined with the help of predictive and classification techniques to support decision-making in fields like e-commerce, industry or health. In particular, stream-based classification is widely used to categorise incoming samples on the fly. However, the distribution of samples per class is often imbalanced, affecting the performance and fairness of machine learning models. To overcome this drawback, this paper proposes Bplug, a balancing plug-in for stream-based classification, to minimise the bias introduced by data imbalance. First, the plug-in determines the class imbalance degree and then synthesises data statistically through non-parametric kernel density estimation. The experiments, performed with real data from Wikivoyage and Metro of Porto, show that Bplug maintains inter-feature correlation and improves classification accuracy. Moreover, it works both online and offline.
- Balcony Greenhouse – An EPS@ISEP 2017 ProjectPublication . Calderon, Alisson; Mota, António; Hopchet, Christophe; Grabulosa, Cristina; Roeper, Mathias; Duarte, Abel José; Malheiro, Benedita; Ribeiro, Maria Cristina; Ferreira, Fernando José; Silva, Manuel; Ferreira, Paulo; Guedes, PedroThis paper presents the development process of a sustainable solution to grow aromatic plants in small houses. The solution is called The GreenHouse and is meant for people who live in small houses or city apartments and want fresh home grown aromatic plants, but have neither the time nor the space to grow them. The solution is intended to be sustainable and appropriate for people concerned with eating healthy, fresh food. The project was developed by a team of five students enrolled in the European Project Semester (EPS) at the Instituto Superior de Engenharia do Porto (ISEP) during the spring of 2017. EPS@ISEP is a project-based learning framework which aims to foster personal, teamwork and multidisciplinary problem-solving skills in engineering, business and product design students. Research and discussions within the team were done to develop the product. The existing solutions for growing fresh food in industrial and domestic applications as well as marketing, sustainability and ethical topics were researched and discussed. This way it was possible to define the requirements of The GreenHouse. The GreenHouse is semi-automatic and requires little interaction from the customer. It has two covers, a winter cover and a summer cover, to be changed depending on the season and weather. Solar energy and rainwater are used to enable the growth of aromatic plants, making this a sustainable system. The support is adaptable and made to fit different support sizes so it can be hanged on balconies or windows.
- Ball Sensing in a Leg Like Robotic KickerPublication . Logghe, Jonas; Dias, André; Almeida, José Miguel; Martins, Alfredo; Silva, EduardoThe trend to have more cooperative play and the increase of game dynamics in Robocup MSL League motivates the improvement of skills for ball passing and reception. Currently the majority of the MSL teams uses ball handling devices with rollers to have more precise kicks but limiting the capability to kick a moving ball without stopping it and grabbing it. This paper addresses the problem to receive and kick a fast moving ball without having to grab it with a roller based ball handling device. Here, the main difficulty is the high latency and low rate of the measurements of the ball sensing systems, based in vision or laser scanner sensors.Our robots use a geared leg coupled to a motor that acts simultaneously as the kicking device and low level ball sensor. This paper proposes a new method to improve the capability for ball sensing in the kicker, by combining high rate measurements from the torque and energy in the motor and angular position of the kicker leg. The developed method endows the kicker device with an effective ball detection ability, validated in several game situations like in an interception to a fast pass or when chasing the ball where the relative speed from robot to ball is low. This can be used to optimize the kick instant or by the embedded kicker control system to absorb the ball energy.
- BLUECOM+: Cost-effective broadband communications at remote ocean areasPublication . Campos, Rui; Oliveira, Tiago; Cruz, Nuno; Matos, Anibal; Almeida, José MiguelThe ocean and the Blue Economy are increasingly top priorities worldwide. The immense ocean territory in the planet and its huge associated economical potential is envisioned to increase the activity at the ocean in the forthcoming years. The support of these activities, and the convergence to the Internet of Things paradigm, will demand wireless and mobile communications to connect humans and systems at remote ocean areas. Currently, there is no communications solution enabling cost-effective broadband Internet access at remote ocean areas in alternative to expensive, narrowband satellite communications. This paper presents the maritime communications solution being developed in the BLUECOM+ project. The BLUE-COM+ solution enables cost-effective broadband Internet access at remote ocean areas using standard wireless access technologies, e.g., GPRS/UMTS/LTE and Wi-Fi. Its novelty lies on the joint use of TV white spaces for long range radio communications, tethered balloons for lifting communications nodes high above the ocean surface, multi-hop relaying techniques for radio range extension, and standard access networks at the ocean. Simulation results prove it is possible to reach radio ranges beyond 100 km and bitrates in excess of 3 Mbit/s using a two-hop land-sea communications chain.
