Browsing by Author "Trigui, Sahar"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- An Analytical Hierarchy Process-Based Approach to Solve the Multi-Objective Multiple Traveling Salesman ProblemPublication . Trigui, Sahar; Cheikhrouhou, Omar; Koubâa, Anis; Zarrad, Anis; Youssef, HabibWe consider the problem of assigning a team of autonomous robots to target locations in the context of a disaster management scenario while optimizing several objectives. This problem can be cast as a multiple traveling salesman problem, where several robots must visit designated locations. This paper provides an analytical hierarchy process (AHP)-based approach to this problem, while minimizing three objectives: the total traveled distance, the maximum tour, and the deviation rate. The AHP-based approach involves three phases. In the first phase, we use the AHP process to define a specific weight for each objective. The second phase consists in allocating the available targets, wherein we define and use three approaches: market-based, robot and task mean allocation-based, and balanced-based. Finally, the third phase involves the improvement in the solutions generated in the second phase. To validate the efficiency of the AHP-based approach, we used MATLAB to conduct an extensive comparative simulation study with other algorithms reported in the literature. The performance comparison of the three approaches shows a gap between the market-based approach and the other two approaches of up to 30%. Further, the results show that the AHP-based approach provides a better balance between the objectives, as compared to other state-of-the-art approaches. In particular, we observed an improvement in the total traveled distance when using the AHP-based approach in comparison with the distance traveled when using a clustering-based approach.
- A clustering market-based approach for multi-robot emergency response applicationsPublication . Trigui, Sahar; Koubâa, Anis; Cheikhrouhou, Omar; Qureshi, Basit; Youssef, HabibIn this paper, we address the problem of multi-robot systems in emergency response applications, where a team of robots/drones has to visit affected locations to provide rescue services. In the literature, the most common approach is to assign target locations individually to robots using centralized or distributed techniques. The problem is that the computation complexity increases significantly with the number of robots and target locations. In addition, target locations may not be assigned uniformly among the robots. In this paper, we propose, CMMTSP, a clustering market-based approach that first groups locations into clusters, then assigns clusters to robots using a market-based approach. We formulate the problem as multipledepot MTSP and address the multi-objective optimization of three objectives namely, the total traveled distance, the maximum traveled distance and the mission time. Simulations show that CM-MTSP provides a better balance among the three objectives as compared to a single objective optimization, in particular an enhancement of the mission time, and reduces the execution time to at least 80% as compared to a greedy approach.
- Dynamic Multi-Objective Auction-Based (DYMO-Auction) Task AllocationPublication . Baroudi, Uthman; Alshaboti, Mohammad; Koubaa, Anis; Trigui, SaharIn this paper, we address the problem of online dynamic multi-robot task allocation (MRTA) problem. In the existing literature, several works investigated this problem as a multi-objective optimization (MOO) problem and proposed different approaches to solve it including heuristic methods. Existing works attempted to find Pareto-optimal solutions to the MOO problem. However, to the best of authors’ knowledge, none of the existing works used the task quality as an objective to optimize. In this paper, we address this gap, and we propose a new method, distributed multi-objective task allocation approach (DYMO-Auction), that considers tasks’ quality requirement, along with travel distance and load balancing. A robot is capable of performing the same task with different levels of perfection, and a task needs to be performed with a level of perfection. We call this level of perfection quality level. We designed a new utility function to consider four competing metrics, namely the cost, energy, distance, type of tasks. It assigns the tasks dynamically as they emerge without global information and selects the auctioneer randomly for each new task to avoid the single point of failure. Extensive simulation experiments using a 3D Webots simulator are conducted to evaluate the performance of the proposed DYMO-Auction. DYMO-Auction is compared with the sequential single-item approach (SSI), which requires global information and offline calculations, and with Fuzzy Logic Multiple Traveling Salesman Problem (FL-MTSP) approach. The results demonstrate a proper matching with SSI in terms of quality satisfaction and load balancing. However, DYMO-Auction demands 20% more travel distance. We experimented with DYMO-Auction using real Turtlebot2 robots. The results of simulation experiments and prototype experiments follow the same trend. This demonstrates the usefulness and practicality of the proposed method in real-world scenarios.
- FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman problem for multi-robot systemsPublication . Trigui, Sahar; Cheikhrouhou, Omar; Koubâa, Anis; Baroudi, Uthman; Youssef, HabibThis paper considers the problem of assigning target locations to be visited by mobile robots. We formulate the problem as a multiple-depot multiple traveling salesman problem (MD-MTSP), an NP-Hard problem instance of the MTSP. In contrast to most previous works, we seek to optimize multiple performance criteria, namely the maximum traveled distance and the total traveled distance, simultaneously. To address this problem, we propose, FL-MTSP, a new fuzzy logic approach that combines both metrics into a single fuzzy metric, reducing the problem to a single-objective optimization problem. Extensive simulations show that the proposed fuzzy logic approach outperforms an existing centralized Genetic Algorithm (MDMTSP_GA) in terms of providing a good trade-off of the two performance metrics of interest. In addition, the execution time of FL-MTSP was shown to be always faster than that of the MDMTSP_GA approach, with a ratio of 89 %.
- FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman problem for multi-robot systemsPublication . Trigui, Sahar; Cheikhrouhou, Omar; Koubâa, Anis; Baroudi, Uthman; Youssef, HabibThis paper considers the problem of assigning target locations to be visited by mobile robots. We formulate the problem as a multiple-depot multiple traveling salesman problem (MD-MTSP), an NP-Hard problem instance of the MTSP. In contrast to most previous works, we seek to optimize multiple performance criteria, namely the maximum traveled distance and the total traveled distance, simultaneously. To address this problem, we propose, FL-MTSP, a new fuzzy logic approach that combines both metrics into a single fuzzy metric, reducing the problem to a single-objective optimization problem. Extensive simulations show that the proposed fuzzy logic approach outperforms an existing centralized Genetic Algorithm (MDMTSP_GA) in terms of providing a good trade-off of the two performance metrics of interest. In addition, the execution time of FL-MTSP was shown to be always faster than that of the MDMTSP_GA approach, with a ratio of 89 %.
- Robot Path Planning and CooperationPublication . Koubaa, Anis; Bennaceur, Hachemi; Chaari, Imen; Trigui, Sahar; Ammar, Adel; Sriti, Mohamed-Foued; Alajlan, Maram; Cheikhrouhou, Omar; Javed, YasirThis book presents extensive research on two main problems in robotics: the path planning problem and the multi-robot task allocation problem. It is the first book to provide a comprehensive solution for using these techniques in large-scale environments containing randomly scattered obstacles. The research conducted resulted in tangible results both in theory and in practice. For path planning, new algorithms for large-scale problems are devised and implemented and integrated into the Robot Operating System (ROS). The book also discusses the parallelism advantage of cloud computing techniques to solve the path planning problem, and, for multi-robot task allocation, it addresses the task assignment problem and the multiple traveling salesman problem for mobile robots applications. In addition, four new algorithms have been devised to investigate the cooperation issues with extensive simulations and comparative performance evaluation. The algorithms are implemented and simulated in MATLAB and Webots.
