Browsing by Author "Pinto, Carla M.A."
Now showing 1 - 10 of 36
Results Per Page
Sort Options
- Bipedal Locomotion: A Fractional CPG for Generating PatternsPublication . Pinto, Carla M.A.; Machado, J.A.TenreiroThere has been an increase interest in the study of animal locomotion. Many models for the generation of locomotion patterns of different animals, such as centipedes, millipedes, quadrupeds, hexapods, bipeds, have been proposed. The main goal is the understanding of the neural bases that are behind animal locomotion. In vertebrates, goal-directed locomotion is a complex task, involving the central pattern generators located somewhere in the spinal cord, the brainstem command systems for locomotion, the control systems for steering and control of body orientation, and the neural structures responsible for the selection of motor primitives. In this paper, we focus in the neural networks that send signals to the muscle groups in each joint, the so-called central pattern generators (CPGs). We consider a fractional version of a CPG model for locomotion in bipeds. A fractional derivative) Dα f (x), with α non-integer, is a generalization of the concept of an integer derivative, where α = 1 The integer CPG model has been proposed by Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and Golubitsky. It is a four cells model, where each cell is modelled by a system of ordinary differential equations. The coupling between the cells allows two independent permutations, and, as so, the system has D2 symmetry. We consider 0 < α ≤ 1 and we compute, for each value of α, the amplitude and the period of the periodic solutions identified with two legs' patterns in bipeds. We find the amplitude and the period increase as α varies from zero up to one.
- Casualties distribution in human and natural hazardsPublication . Pinto, Carla M.A.; Lopes, A.Mendes; Machado, J.A.TenreiroCatastrophic events, such as wars and terrorist attacks, big tornadoes and hurricanes, huge earthquakes, tsunamis, floods, and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties have separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data set is better approximated by two PLs instead of one. We have plotted the two PL parameters corresponding to all terrorist events occurred in every year, from 1980 to 2010. We observe an interesting pattern in the chart, where the lines, that connect each pair of points defining the double PLs, are roughly aligned to each other.
- A coinfection model for HIV and HCVPublication . Pinto, Carla M.A.; Carvalho, Ana R.M.We study a mathematical model for the human immunodeficiency virus (HIV) and hepatites C virus (HCV) coinfection. The model predicts four distinct equilibria: the disease free, the HIV endemic, the HCV endemic, and the full endemic equilibria. The local and global stability of the disease free equilibrium was calculated for the full model and the HIV and HCV submodels. We present numerical simulations of the full model where the distinct equilibria can be observed. We show simulations of the qualitative changes of the dynamical behavior of the full model for variation of relevant parameters. From the results of the model, we infer possible measures that could be implemented in order to reduce the number of infected individuals.
- Complex order biped rhythmsPublication . Pinto, Carla M.A.; Machado, J.A.TenreiroAnimal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.
- Complex order van der Pol oscillatorPublication . Pinto, Carla M.A.; Machado, J.A.TenreiroIn this paper a complex-order van der Pol oscillator is considered. The complex derivative Dα±ȷβ , with α,β∈R + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.
- Complex-order forced van der Pol oscillatorPublication . Pinto, Carla M.A.; Machado, J.A.TenreiroIn this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
- Coupled fractional spiking neuronsPublication . Pinto, Carla M.A.We propose a fractional-order (FO) model of two symmetrically coupled Hodgkin-Huxley equations and study the patterns of the neurons’ firing rates, for distinct values of the order of the fractional derivative, 𝛼, and the temperature, 𝑇. We find that, for positive values of the coupling, the neurons exhibit in-phase periodic solutions (neurons fire at the same time). Moreover, the spike amplitude decreases with 𝛼, meaning that the neuron stops firing below some threshold. This is observed for the three values of 𝑇 studied here. For smaller 𝑇, the periodic solutions are sustained for smaller values of 𝛼. For negative values of the coupling the neurons show anti-phase synchronization for the integer-order model (neurons fire periodically with a halfperiod phase shift). In the case of the FO model, these antiphase symmetric solutions disappear as 𝛼 decreases from 1, for fixed 𝑇. Another bifurcation seems thus to occur being 𝛼 again a bifurcation parameter. This feature occurs only in the FO system, which seems to behave as an asymmetrically coupled HH system previously studied. Furher analyses is required.
- Double power laws, fractals and self-similarityPublication . Pinto, Carla M.A.; Lopes, António M.; Machado, J.A.TenreiroPower law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
- Double power laws, fractals and self-similarityPublication . Pinto, Carla M.A.; Lopes, A. Mendes; Machado, J.A.TenreiroPower law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
- Effects of treatment, awareness and condom use in a coinfection model for HIV and HCV in MSMPublication . Pinto, Carla M.A.; Carvalho, Ana R.M.We develop a new a coinfection model for hepatitis C virus (HCV) and the human immunodeficiency virus (HIV). We consider treatment for both diseases, screening, unawareness and awareness of HIV infection, and the use of condoms. We study the local stability of the disease-free equilibria for the full model and for the two submodels (HCV only and HIV only submodels). We sketch bifurcation diagrams for different parameters, such as the probabilities that a contact will result in a HIV or an HCV infection. We present numerical simulations of the full model where the HIV, HCV and double endemic equilibria can be observed. We also show numerically the qualitative changes of the dynamical behavior of the full model for variation of relevant parameters. We extrapolate the results from the model for actual measures that could be implemented in order to reduce the number of infected individuals.
