Percorrer por autor "Chaari, Imen"
A mostrar 1 - 4 de 4
Resultados por página
Opções de ordenação
- Design and performance analysis of global path planning techniques for autonomous mobile robots in grid environmentsPublication . Chaari, Imen; Koubâa, Anis; Bennaceur, Hachemi; Ammar, Adel; Alajlan, Maram; Youssef, HabibThis article presents the results of the 2-year iroboapp research project that aims at devising path planning algorithms for large grid maps with much faster execution times while tolerating very small slacks with respect to the optimal path. We investigated both exact and heuristic methods. We contributed with the design, analysis, evaluation, implementation and experimentation of several algorithms for grid map path planning for both exact and heuristic methods. We also designed an innovative algorithm called relaxed A-star that has linear complexity with relaxed constraints, which provides near-optimal solutions with an extremely reduced execution time as compared to A-star. We evaluated the performance of the different algorithms and concluded that relaxed A-star is the best path planner as it provides a good trade-off among all the metrics, but we noticed that heuristic methods have good features that can be exploited to improve the solution of the relaxed exact method. This led us to design new hybrid algorithms that combine our relaxed A-star with heuristic methods which improve the solution quality of relaxed A-star at the cost of slightly higher execution time, while remaining much faster than A* for large-scale problems. Finally, we demonstrate how to integrate the relaxed A-star algorithm in the robot operating system as a global path planner and show that it outperforms its default path planner with an execution time 38% faster on average.
- Global robot Path Planning using GA for Large Grid Maps: Modelling, Performance and ExperimentationPublication . Alajlan, Maram; Chaari, Imen; Koubâa, Anis; Bennaceur, Hachemi; Ammar, Adel; Youssef, HabibIn this paper, the efficiency of genetic algorithm (GA) approach to address the problem of global path planning for mobile robots in large-scale grid environments is revisited and assessed. First, an efficient GA path planner to find an (or near) optimal path in a grid map is proposed. In particular, large maps instances are considered in this work, as small maps are easy to address by typical linear-time exact algorithms, in contrast to large maps, which require more intensive computations. The operators of the GA planner were carefully designed for optimizing the search process. Also, extensive simulations to evaluate the GA planner are conducted, and its performance is compared to that of the A algorithm considered as benchmarking reference. We found out that the GA planner can find optimal solutions in the same way as A in large grid maps in most cases, but A is faster than the GA. This is because GA is not a constructive path planner and heavily relies on initial population to explore the space of solutions in contrast to A that builds its solution progressively towards the target. It was concluded that, although GA can provide an alternative to A technique, it is likely that they are not efficient enough to beat exact methods such as A when used with a consistent heuristic. The GA planner is integrated in the global path planning modules of the Robot Operating System (ROS), its feasibility is demonstrated, and its performance is compared against the default ROS planner.
- On the Robot Path Planning using Cloud Computing for Large Grid MapsPublication . Chaari, Imen; Koubâa, Anis; Qureshi, Basit; Youssef, Habib; Severino, Ricardo; Tovar, EduardoGlobal path planning consists in finding the optimal path for a mobile robot with the lowest cost in the minimum amount of time, without colliding with the obstacles scattered in the workspace. In this paper, we investigate the benefits of offloading path planning algorithms to be executed in the cloud rather than in the robot. The contribution consists in developing a vertex-centric implementation of RA∗ [1], a version of A∗ that we developed for grid maps and that was proven to be much faster than A∗, using the distributed graph processing framework Giraph that rely on Hadoop. We also developed a centralized cloud-based C++ implementation of the algorithm for benchmarking and comparison purposes. Experimental results on a real cloud shows that the distributed graph processing Giraph fails to provide faster execution as compared to centralized C++ implementation for different map sizes and configuration due to non-real time properties of Hadoop.
- Robot Path Planning and CooperationPublication . Koubaa, Anis; Bennaceur, Hachemi; Chaari, Imen; Trigui, Sahar; Ammar, Adel; Sriti, Mohamed-Foued; Alajlan, Maram; Cheikhrouhou, Omar; Javed, YasirThis book presents extensive research on two main problems in robotics: the path planning problem and the multi-robot task allocation problem. It is the first book to provide a comprehensive solution for using these techniques in large-scale environments containing randomly scattered obstacles. The research conducted resulted in tangible results both in theory and in practice. For path planning, new algorithms for large-scale problems are devised and implemented and integrated into the Robot Operating System (ROS). The book also discusses the parallelism advantage of cloud computing techniques to solve the path planning problem, and, for multi-robot task allocation, it addresses the task assignment problem and the multiple traveling salesman problem for mobile robots applications. In addition, four new algorithms have been devised to investigate the cooperation issues with extensive simulations and comparative performance evaluation. The algorithms are implemented and simulated in MATLAB and Webots.
