Repository logo
 
Publication

Protein attributes-based predictive tool in a down syndrome mouse model: a machine learning approach

dc.contributor.authorRibeiro-Machado, Cláudia
dc.contributor.authorSilva, Sara Costa
dc.contributor.authorAguiar, Sara
dc.contributor.authorFaria, Brígida Mónica
dc.date.accessioned2019-11-20T17:33:09Z
dc.date.available2019-11-20T17:33:09Z
dc.date.issued2018
dc.description.abstractDown syndrome is a disorder caused by an imbalance in the 21 chromosome, affecting learning and memorizing abilities, which was shown to be improved with memantine administration. In this study we intent to determine the most relevant proteins that could play a role in learning ability, suitable for possible biomarkers and to evaluate the accuracy of several bioinformatic models as a predictive tool. Five different supervised learning models (K-NN, DT, SVM, NB, NN) were applied to the original database and the newly created ones from eight attribute weighting models. Model accuracies were calculated through cross validation. Nine proteins revealed to be strong candidates as future biomarkers and K-NN and Neural Network had the better overall performances and highest accuracies (86.26% ± 0.23%; 81.51% ± 0.48%), which makes them a promising predictive tool to study protein profiles in DS patients’ follow-up after treatment with memantine.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRibeiro-Machado, C., Silva, S. C., Aguiar, S., & Faria, B. M. (2018). Protein Attributes-Based Predictive Tool in a Down Syndrome Mouse Model: A Machine Learning Approach. Em Á. Rocha, H. Adeli, L. P. Reis, & S. Costanzo (Eds.), Trends and Advances in Information Systems and Technologies (pp. 19–28). Springer International Publishing. https://doi.org/10.1007/978-3-319-77700-9_3
dc.identifier.doi10.1007/978-3-319-77700-9_3pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/14876
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-319-77700-9_3pt_PT
dc.subjectDown syndromept_PT
dc.subjectPredictionpt_PT
dc.subjectLearning improvementpt_PT
dc.subjectData miningpt_PT
dc.subjectAttributes weightingpt_PT
dc.subjectClassificationpt_PT
dc.titleProtein attributes-based predictive tool in a down syndrome mouse model: a machine learning approachpt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage28pt_PT
oaire.citation.startPage19pt_PT
oaire.citation.titleTrends and Advances in Information Systems and Technologies. WorldCIST'18pt_PT
oaire.citation.volume747pt_PT
person.familyNameAguiar
person.familyNameFaria
person.givenNameSara
person.givenNameBrigida Monica
person.identifierR-000-T1F
person.identifier.ciencia-id0D1F-FB5E-55E4
person.identifier.orcid0000-0003-3642-5425
person.identifier.orcid0000-0003-2102-3407
person.identifier.ridC-6649-2012
person.identifier.scopus-author-id6506476517
rcaap.rightsrestrictedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication1a5db31b-4b2c-423a-b493-d5a4ab0a890b
relation.isAuthorOfPublication85832a40-7ef9-431a-be0c-78b45ebbae86
relation.isAuthorOfPublication.latestForDiscovery1a5db31b-4b2c-423a-b493-d5a4ab0a890b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CAP_BrígidaFaria_2018.pdf
Size:
992.49 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: