Repository logo
 
Publication

Analytical stability analysis of the fractional-order particle swarm optimization algorithm

dc.contributor.authorPahnehkolaei, Seyed Mehdi Abedi
dc.contributor.authorAlfi, Alireza
dc.contributor.authorMachado, J. A. Tenreiro
dc.date.accessioned2022-12-21T12:39:27Z
dc.date.available2023-03-01T01:31:35Z
dc.date.issued2022
dc.description.abstractMathematical modeling plays an important role in biology for describing the dynamics of infectious diseases. A useful strategy for controlling infections and disorder conditions is to adopt computational algorithms for determining interactions among their processes. The use of fractional order (FO) calculus has been proposed as one relevant tool for improving heuristic models. The particles memory is captured by the FO derivative and that strategy opens the door for grasping the memory of the long-term particle past behavior. This papers studies the analytical convergence of FO particle swarm optimization algorithm (FOPSO) based on a weak stagnation assumption. This approach allows establishing systematic guidelines for the FOPSO parameters tuning. The FOPSO is formulated on the basis of a control block diagram and the particle dynamics are represented as a nonlinear feedback. To describe the historical evolution of the particles, a state-space representation of different types of the FOPSO is formulated as a delayed discrete-time system. The existence and uniqueness of the equilibrium point of the FOPSO are discussed, and the stability analysis is derived to determine its convergence boundaries. Several simulations confirm the stability region of the FOPSO equilibrium point. The algorithm is also applied to a practical application, namely the minimization of the blood glucose injection in Type I diabetes mellitus patients.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.chaos.2021.111658pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/21232
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0960077921010122pt_PT
dc.subjectFractional calculuspt_PT
dc.subjectStabilitypt_PT
dc.subjectParticle swarm optimizationpt_PT
dc.titleAnalytical stability analysis of the fractional-order particle swarm optimization algorithmpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage111658pt_PT
oaire.citation.titleChaos, Solitons & Fractalspt_PT
oaire.citation.volume155pt_PT
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.embargofctPublisher policypt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_DEE_2022.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: