Logo do repositório
 
Publicação

Prospective validation and usability evaluation of a mobile diagnostic App for Obstructive Sleep Apnea

dc.contributor.authorAmorim, Pedro
dc.contributor.authorSantos, Daniela Ferreira
dc.contributor.authorDrummond, Marta
dc.contributor.authorRodrigues, Pedro Pereira
dc.date.accessioned2025-12-05T14:58:13Z
dc.date.available2025-12-05T14:58:13Z
dc.date.issued2024-11-11
dc.description.abstractObstructive sleep apnea (OSA) classification relies on polysomnography (PSG) results. Current guidelines recommend the development of clinical prediction algorithms in screening prior to PSG. A recent intuitive and user-friendly tool (OSABayes), based on a Bayesian network model using six clinical variables, has been proposed to quantify the probability of OSA. Our aims are (1) to validate OSABayes prospectively, (2) to build a smartphone app based on the proposed model, and (3) to evaluate app usability. We prospectively included adult patients suspected of OSA, without suspicion of other sleep disorders, who underwent level I or III diagnostic PSG. Apnea–hypopnea index (AHI) and OSABayes probabilities were obtained and compared using the area under the ROC curve (AUC [95%CI]) for OSA diagnosis (AHI ≥ 5/h) and higher severity levels (AHI ≥ 15/h) prediction. We built the OSABayes app on ‘App Inventor 2’, and the usability was assessed with a cognitive walkthrough method and a general evaluation. 216 subjects were included in the validation cohort, performing PSG levels I (34%) and III (66%). OSABayes presented an AUC of 83.6% [77.3–90.0%] for OSA diagnosis and 76.3% [69.9–82.7%] for moderate/severe OSA prediction, showing good response for both types of PSG. The OSABayes smartphone application allows one to calculate the probability of having OSA and consult information about OSA and the tool. In the usability evaluation, 96% of the proposed tasks were carried out. These results show the good discrimination power of OSABayes and validate its applicability in identifying patients with a high pre-test probability of OSA. The tool is available as an online form and as a smartphone app, allowing a quick and accessible calculation of OSA probabilitypor
dc.description.sponsorship0043_NET4SLEEP_2_E
dc.identifier.citationAmorim, P., Ferreira-Santos, D., Drummond, M., & Rodrigues, P. P. (2024). Prospective validation and usability evaluation of a mobile diagnostic App for Obstructive Sleep Apnea. Diagnostics, 14(22), 2519. https://doi.org/10.3390/diagnostics14222519
dc.identifier.doi10.3390/diagnostics14222519
dc.identifier.eissn2075-4418
dc.identifier.urihttp://hdl.handle.net/10400.22/31118
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relation.hasversionhttps://www.mdpi.com/2075-4418/14/22/2519
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectObstructive sleep apnea
dc.subjectDiagnosis
dc.subjectMobile applications
dc.subjectBayesian network
dc.subjectArtificial intelligence
dc.subjectPolysomnography
dc.titleProspective validation and usability evaluation of a mobile diagnostic App for Obstructive Sleep Apneapor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue22
oaire.citation.titleDiagnostics
oaire.citation.volume14
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
ART_Pedro Amorim.pdf
Tamanho:
680.18 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: