Logo do repositório
 
Publicação

Computacional pathology: What’s new

dc.contributor.authorCoelho, Daniel
dc.contributor.authorAssunção, Teresa
dc.contributor.authorBorrecho, Gonçalo
dc.contributor.authorGeraldes, Mariana
dc.contributor.authorVinagre, Tiago
dc.contributor.authorFerreira, Inês
dc.contributor.authorFerreira, Ana
dc.contributor.authorFernandes, Ana Isabel
dc.contributor.authorFrança, Amélia
dc.contributor.authorVale, João
dc.contributor.authorCurado, Mónica
dc.contributor.authorMendes, Fernando
dc.contributor.authorMartins, Diana
dc.date.accessioned2026-01-21T16:29:49Z
dc.date.available2026-01-21T16:29:49Z
dc.date.issued2024-03
dc.description.abstractThe term computacional pathology (CPath) has become a buzz-word among the digital pathology community. Adances in scanning systems, imaging technologies and storage devices are generating an ever-increasing volume of whole-slide images (WSI) acquired in clinical settings, which can be computacionally analyzed using artificial intelligence (AI), such as deep learning technologies, in a new área of development called CPath. The purpose of the review is to disseminate the latest news and futures perspectives by CPath. Deep learning in the context of CPath has methodological contributions that can be distinguished into approaches based on the final purpose of the analysis: predicting clinical endpoints such as cancer subtype, patient survival or genetic mutations from WSI and AI-based assistive tools, such as segmentation methods for WSI or virtual staining. The emergence of multipex imaging, spatially resolver genomic assays and 3D pathology, among other methodologies, will accelerate this trend, providing new opportunities for multimodal integration and discovering new biomarkers. Additionally, these developments will help automating labor-intensive manual work and reducing inter-observer variability diagnosis between pathologists, contributing to a better patient care. CPath will underpin the development of the next generation of cancer therapies and diagnostics, changing the clinical research and ultimately leading towards new cures or improved patient outcomes.eng
dc.identifier.citationCoelho, D., Assunção, T., Borrecho, G., Geraldes, M., Vinagre, T., Ferreira, I., Ferreira, A., Fernandes, A. I., França, A., Vale, J., Curado, M., Mendes, F., & Martins, D. (2024). Computacional pathology: What’s new. Trends in Biomedical Laboratory Sciences - Abstract Book II Congresso BioMedLab, Vol 2 nº1 Supplement, 78. https://biomedlab.pt/wp-content/uploads/2024/03/Abstract-Book_Revista-Vol-2_020324.pdf
dc.identifier.urihttp://hdl.handle.net/10400.22/31590
dc.language.isoeng
dc.peerreviewedyes
dc.publisherAssociação Portuguesa de Ciências Biomédicas Laboratoriais
dc.relation.hasversionhttps://biomedlab.pt/wp-content/uploads/2024/03/Abstract-Book_Revista-Vol-2_020324.pdf
dc.rights.uriN/A
dc.subjectDigital pathology
dc.subjectComputacional pathology
dc.subjectArtificial intelligence
dc.titleComputacional pathology: What’s neweng
dc.typeconference poster
dspace.entity.typePublication
oaire.citation.conferenceDate2024-03
oaire.citation.conferencePlaceCoimbra
oaire.citation.issue1 Supplement
oaire.citation.startPage78
oaire.citation.titleTrends in Biomedical Laboratory Sciences - Abstract Book II Congresso BioMedLab
oaire.citation.volume2
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
POSTER_João Vale.pdf
Tamanho:
3.26 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: