Name: | Description: | Size: | Format: | |
---|---|---|---|---|
26.06 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O presente documento contempla um estudo dos principais fatores inerentes à operação e desenvolvimento
dos conversores de potência bidirecionais Voltage Source Converters (VSCs). Estes
conversores desempenham um papel fundamental no âmbito da integração das energias renováveis,
nomeadamente a solar fotovoltaica e a eólica, e de baterias estacionárias, atuando como
interface entre estes recursos e a rede.
Numa fase inicial, são apresentadas as características mais preponderantes dos VSCs, bem como
os princípios genéricos que sustentam o seu funcionamento. As transformadas de Clarke e Park
surgem como ferramentas matemáticas que permitem simplificar a análise e o controlo destes
conversores. O sincronismo com a rede, a técnica de modulação adotada e o método de controlo
são aspetos de particular relevância no âmbito do desempenho destes conversores.
Posteriormente, através de uma etapa de modelação, é caracterizado matematicamente o comportamento
do VSC, o que permite desenvolver um modelo de controlo adequado. Toda a fundamentação
teórica é validada em ambiente de simulação. Partindo das simulações nos domínios
de tempo contínuo e discreto, é avaliado o desempenho do VSC sob diferentes condições de
operação.
Com base no suporte fornecido pela etapa de simulação, é desenvolvido um protótipo laboratorial
de um VSC de interface à rede, considerando um sistema de armazenamento de energia
a baterias. Após uma breve caracterização do hardware utilizado e da montagem efetuada, são
abordados os aspetos fundamentais da implementação prática, incluindo as malhas de controlo
e a geração dos sinais associados à modulação, os mecanismos de proteção e o tempo de execução
do código desenvolvido.
No final, através de um conjunto de ensaios laboratoriais, é validado o desempenho do protótipo
concebido. Os resultados obtidos evidenciam a possibilidade de operação do VSC sob os quatro
quadrantes de potência, sendo possível carregar ou descarregar as baterias e, simultaneamente,
alterar o fator de potência imposto pelo conversor à rede. O controlo desacoplado das potências
ativa e reativa, bem como a rápida resposta do conversor perante diferentes referências destas
potências, elevam o valor do VSC enquanto solução de suporte à rede e de prestação de serviços
de sistema, nomeadamente regulação de frequência e controlo de tensão.
This document includes a study of the main factors inherent to the operation and development of bidirectional Voltage Source Converters (VSCs). These converters play a fundamental role in the integration of renewable energies, namely solar photovoltaic and wind, and stationary batteries, acting as an interface between these resources and the grid. Initially, the most relevant characteristics of VSCs are presented, as well as the generic principles that sustain their operation. The Clarke and Park transforms are mathematical tools that simplify the analysis and control of these converters. Synchronism with the grid, the adopted modulation technique and the control method are particularly important aspects in terms of the performance of these converters. Subsequently, through a modelling stage, the behaviour of the VSC is mathematically characterized, allowing the development of an appropriate control model. All the theoretical fundamentation are validated in a simulation environment. Based on continuous‐time and discrete‐time simulations, the VSC’s performance is evaluated under different operating conditions. Based on the support provided by the simulation stage, a VSC interfacing the grid prototype is developed for an energy storage system using batteries. After a brief characterization of the hardware used and the carried out assembly, the fundamental aspects of the practical implementation are discussed, including the control loops and the generation of the modulation signals, the protection mechanisms and the execution time of the developed code. Finally, a series of laboratory tests validate the performance of the prototype. The obtained results show that the VSC can operate in all four power quadrants, making it possible to charge or discharge the batteries and simultaneously change the power factor imposed by the converter on the grid. The decoupled control of the active and reactive power, as well as the converter’s fast response to different references of these powers, increase the value of the VSC as a solution to support the grid and provide ancillary services, namely frequency regulation and voltage control.
This document includes a study of the main factors inherent to the operation and development of bidirectional Voltage Source Converters (VSCs). These converters play a fundamental role in the integration of renewable energies, namely solar photovoltaic and wind, and stationary batteries, acting as an interface between these resources and the grid. Initially, the most relevant characteristics of VSCs are presented, as well as the generic principles that sustain their operation. The Clarke and Park transforms are mathematical tools that simplify the analysis and control of these converters. Synchronism with the grid, the adopted modulation technique and the control method are particularly important aspects in terms of the performance of these converters. Subsequently, through a modelling stage, the behaviour of the VSC is mathematically characterized, allowing the development of an appropriate control model. All the theoretical fundamentation are validated in a simulation environment. Based on continuous‐time and discrete‐time simulations, the VSC’s performance is evaluated under different operating conditions. Based on the support provided by the simulation stage, a VSC interfacing the grid prototype is developed for an energy storage system using batteries. After a brief characterization of the hardware used and the carried out assembly, the fundamental aspects of the practical implementation are discussed, including the control loops and the generation of the modulation signals, the protection mechanisms and the execution time of the developed code. Finally, a series of laboratory tests validate the performance of the prototype. The obtained results show that the VSC can operate in all four power quadrants, making it possible to charge or discharge the batteries and simultaneously change the power factor imposed by the converter on the grid. The decoupled control of the active and reactive power, as well as the converter’s fast response to different references of these powers, increase the value of the VSC as a solution to support the grid and provide ancillary services, namely frequency regulation and voltage control.
Description
Keywords
Voltage Source Converter Grid Interface Battery Storage Grid Synchronization Modulation Techniques Interface à rede Armazenamento em baterias Sincronismo com a rede Técnicas de modulação
Pedagogical Context
Citation
Publisher
CC License
Without CC licence