Logo do repositório
 
Miniatura indisponível
Publicação

Semi-supervised Self-training Approaches in Small and Unbalanced Datasets: Application to Xerostomia Radiation Side-Effect

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
CAP_Brígida_Ferreira_3.pdf59.56 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Supervised learning algorithms have been widely used as predictors and applied in a myriad of studies. The accuracy of the classification algorithms is strongly dependent on the existence of large and balanced training sets. The existence of a reduced number of labeled data can deeply affect the use of supervised approaches. In these cases, semi-supervised learning algorithms can be a way to circumvent the problem.

Descrição

Palavras-chave

Radiotherapy Xerostomia Semi-supervised learning Small databases Unbalanced datasets

Contexto Educativo

Citação

Soares I., Dias J., Rocha H., Khouri L., do Carmo Lopes M., Ferreira B. (2016) Semi-supervised Self-training Approaches in Small and Unbalanced Datasets: Application to Xerostomia Radiation Side-Effect. In: Kyriacou E., Christofides S., Pattichis C. (eds) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IFMBE Proceedings, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-32703-7_161

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Springer

Licença CC

Métricas Alternativas