| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 12.47 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A presente dissertação procurou analisar e propor melhorias no processo de evacuação num Centro Desportivo de Alto Rendimento em Portugal, considerando diferentes cenários de ocupação. Na abordagem teórica associada ao tema em questão, destacou-se a importância da indústria na gestão de infraestruturas desportivas, bem como o papel relevante da simulação computacional na análise de evacuações e respetivo enquadramento legal aplicável em território nacional. A componente prática teve como objetivo principal a avaliação dos tempos
de evacuação dos ocupantes (público) no Centro de Alto Rendimento (CAR) de Anadia, procurando recriar cenários realistas de eventos desportivos realizados nas instalações, nomeadamente competições de ginástica, esgrima e judo, bem como provas de ciclismo de pista. Para além disso, procurou-se analisar o formato de evacuação quando ocupados os quartos disponíveis para estadia dos atletas, identificando e analisando de forma detalhada e exaustiva potenciais estrangulamentos e pontos a melhorar. Através das simulações efetuadas,
e dos 14 cenários criados, os resultados providenciaram uma visão abrangente dos principais fatores que condicionam a evacuação, salientando a importância das características físicas do edifício, tais como a distribuição das saídas e a própria geometria interna. A partir desta dissertação, conclui-se que o tempo necessário para a evacuação total do pavilhão, em condições normais de acesso, no que concerne à assistência em provas de ginástica, judo e esgrima (Cenário 1) apresenta o valor de 285,53 segundos. O Cenário 4, respeitante às bancadas presentes no último piso e responsáveis pela assistência em provas de ciclismo indica que estas
podem ser evacuadas em 290,5 segundos. Por fim, o Cenário 12, indica que a evacuação dos quartos para os 48 ocupantes consegue ser realizada em 128,3 segundos. Verificou-se que apesar da existência de períodos de congestionamento acentuado em fases iniciais, estes não comprometeram a evacuação desde que as saídas estivessem bem distribuídas e funcionais. Os cenários com bloqueios parciais em zonas distintas do pavilhão permitiram observar o comportamento dos intervenientes na procura de alternativas que reduzissem o tempo de evacuação o máximo possível, permitindo o seu escoamento sem necessidade de percorrer grandes distâncias. Estes resultados demonstraram que a bancada fixa, que possui o maior número de lugares disponíveis para assistência, leva mais tempo para evacuar em condições normais de acessos, apesar de não diferir em muito quando comparada à bancada telescópica, localizada no interior do polidesportivo. A distribuição de saídas ajuda de forma natural numa mais rápida evacuação dos adeptos, permitindo que estes consigam, apesar de em maior
número, evacuar praticamente no mesmo tempo. Isto demonstra que a localização das saídas são tão ou mais importantes do que o próprio número de ocupantes, desde que a distribuição seja equilibrada e funcional. Nos quartos, a evacuação revelou-se rápida e eficaz, refletindo a menor densidade de ocupação e a boa acessibilidade às saídas, mesmo quando surgiram restrições pontuais. Em espaços com menor complexidade espacial e densidade controlada, a evacuação pode decorrer de forma segura e sem constrangimentos significativos, garantindo o bem-estar dos ocupantes.
This dissertation aimed to analyse and propose improvements to the evacuation process in a High-Performance Sports Centre in Portugal, considering various occupancy scenarios. In the theoretical framework of this study, the importance of the industry in managing sports infrastructures was highlighted, as well as the significant role of computational simulation in evacuation analysis and its respective legal framework applicable in Portugal. The practical component primarily focused on assessing the evacuation times of occupants (public) at the Centro de Alto Rendimento (CAR) de Anadia, aiming to recreate realistic scenarios of sporting events held in these facilities, including gymnastics, fencing, and judo competitions, as well as track cycling events. In addition, the evacuation process was analysed when the accommodation rooms for athletes were occupied, identifying and thoroughly examining potential bottlenecks and areas for improvement. The simulations provided, based on the 14 scenarios developed, a comprehensive understanding of the main factors influencing evacuation, underscoring the relevance of the building’s physical characteristics, such as the layout of the exits and the overall internal geometry. From this work, it was concluded that the total evacuation time, in normal conditions, for the sports hall during gymnastics, judo, and fencing competitions (Scenario 1) was 285.53 seconds. Scenario 4, relating to the fixed seating on the upper floor for track cycling events, showed that evacuation could be completed in 290.5 seconds. Finally, Scenario 12 indicated that the evacuation of the rooms accommodating 48 occupants could be carried out in 128.3 seconds. Although there were pronounced periods of congestion during the initial stages of evacuation, these did not compromise the overall process, provided that the exits remained well-distributed and operational. The scenarios involving partial blockages in different areas of the sports hall demonstrated how occupants actively sought alternative routes to minimise their evacuation time, managing to leave the venue without needing to cover excessive distances. These results showed that the fixed stands, which have the largest seating capacity, required the most time to evacuate under normal access conditions, although the difference was not substantial when compared to the telescopic stands located within the indoor arena. The natural distribution of exits facilitated a faster evacuation of spectators, allowing them, despite being in greater numbers, to leave in almost the same amount of time. This demonstrates that the location and accessibility of exits are as important as, if not more important than, the total number of occupants, provided that the distribution of those exits is balanced and functional. Regarding the accommodation rooms, the evacuation process was found to be quick and effective, reflecting the lower density of occupants and the good accessibility of exits, even in the presence of minor restrictions. In areas with simpler spatial configurations and controlled density, evacuation can proceed safely and without significant obstacles, ensuring the well-being of occupants.
This dissertation aimed to analyse and propose improvements to the evacuation process in a High-Performance Sports Centre in Portugal, considering various occupancy scenarios. In the theoretical framework of this study, the importance of the industry in managing sports infrastructures was highlighted, as well as the significant role of computational simulation in evacuation analysis and its respective legal framework applicable in Portugal. The practical component primarily focused on assessing the evacuation times of occupants (public) at the Centro de Alto Rendimento (CAR) de Anadia, aiming to recreate realistic scenarios of sporting events held in these facilities, including gymnastics, fencing, and judo competitions, as well as track cycling events. In addition, the evacuation process was analysed when the accommodation rooms for athletes were occupied, identifying and thoroughly examining potential bottlenecks and areas for improvement. The simulations provided, based on the 14 scenarios developed, a comprehensive understanding of the main factors influencing evacuation, underscoring the relevance of the building’s physical characteristics, such as the layout of the exits and the overall internal geometry. From this work, it was concluded that the total evacuation time, in normal conditions, for the sports hall during gymnastics, judo, and fencing competitions (Scenario 1) was 285.53 seconds. Scenario 4, relating to the fixed seating on the upper floor for track cycling events, showed that evacuation could be completed in 290.5 seconds. Finally, Scenario 12 indicated that the evacuation of the rooms accommodating 48 occupants could be carried out in 128.3 seconds. Although there were pronounced periods of congestion during the initial stages of evacuation, these did not compromise the overall process, provided that the exits remained well-distributed and operational. The scenarios involving partial blockages in different areas of the sports hall demonstrated how occupants actively sought alternative routes to minimise their evacuation time, managing to leave the venue without needing to cover excessive distances. These results showed that the fixed stands, which have the largest seating capacity, required the most time to evacuate under normal access conditions, although the difference was not substantial when compared to the telescopic stands located within the indoor arena. The natural distribution of exits facilitated a faster evacuation of spectators, allowing them, despite being in greater numbers, to leave in almost the same amount of time. This demonstrates that the location and accessibility of exits are as important as, if not more important than, the total number of occupants, provided that the distribution of those exits is balanced and functional. Regarding the accommodation rooms, the evacuation process was found to be quick and effective, reflecting the lower density of occupants and the good accessibility of exits, even in the presence of minor restrictions. In areas with simpler spatial configurations and controlled density, evacuation can proceed safely and without significant obstacles, ensuring the well-being of occupants.
Description
Keywords
Computer Simulation Evacuation Sports Centre PathFinder Simulação computacional Evacuação Centro desportivo
