| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 14.86 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A mobilidade é um dos principais pilares do desenvolvimento da sociedade. As pontes são
estruturas desenvolvidas pela engenharia com um forte contributo nesta vertente, auxiliando
na transposição de barreiras físicas sem interferência significativa com o meio envolvente para
a promoção do desenvolvimento socioeconómico da sociedade/regiões.
Os cimbres são meios auxiliares que suportam o tabuleiro de uma ponte durante o processo de
construção e dividem-se em três tipos principais: ao solo, porticado e autolançável.
O Viaduto Bajada del Páramo, que constitui o caso prático da presente dissertação, é
constituído por dois tabuleiros paralelos entre si (cada um deles com uma extensão de 820 m),
dois encontros (E1 e E2) e quinze pilares (P1 a P15) originando dois vãos extremos de 47 m e
catorze vãos de 59 m. Os tabuleiros direito (caso de estudo) e esquerdo, são construídos no
sentido ascendente, começando pelo encontro E2 e termina no E1.
O tabuleiro tem uma geometria complexa, com a presença de curva e contracurva, variação da
inclinação longitudinal e transversal tendo sido utilizado para a sua construção o cimbre
autolançável inferior MSS70 NRS 16.002 com otimizações específicas de modo a cumprir as
exigências do projeto num ciclo de trabalho de 8 dias úteis.
Dos resultados analisados, verificou-se o impacto da geometria do tabuleiro na duração do ciclo
de trabalho e também na quantidade de horas realizadas.
Apresentam-se no final deste trabalho as principais conclusões obtidas no desenvolvimento do
caso de estudo e propõem-se alguns aspetos para desenvolvimentos futuros na
aplicação/otimização de um cimbre autolançável inferior.
Mobility is a keystone of societal development. Bridges are engineered structures that play a major role in this regard, aiding in the crossing of physical barriers with contained interference with the surrounding environment, thereby promoting the socioeconomic development of societies and regions. Scaffolding equipment act as auxiliary structures that support the deck of a bridge during the construction stage and may be sorted into three main types: continuous falsework, framed falsework, and self-launching scaffolding (Movable Scaffolding Systems or MSS). The case study in which this dissertation is based (Bajada del Paramo Viaduct) consists of two parallel decks (each 820 m long), two abutments (E1 and E2) and fifteen piers (P1 to P15), arranged in two end spans of 47 m and fourteen spans of 59 m. The right (case study) and left deck, builts in climbing direction, begins at abutment E2 and finishes at E1. The deck geometry is complex, with plan curve and counter-curve, variable slope in elevation view and variable transversal slope that goes with the plan curvature. For its construction, adaptations were made to MSS70 NRS 16.002 Movable Scaffolding System, with specific optimisations to meet the project requirements for a construction cycle of 8 working days. The operation performance was surveyed in site, providing data which enable to record cycle times and work volume (number of hours). The results were analysed to characterize the impact of deck geometry in cycle duration and work volume. At the end of this work, the main conclusions are drawn and some aspects for future developments in applications with movable scaffolding systems are proposed.
Mobility is a keystone of societal development. Bridges are engineered structures that play a major role in this regard, aiding in the crossing of physical barriers with contained interference with the surrounding environment, thereby promoting the socioeconomic development of societies and regions. Scaffolding equipment act as auxiliary structures that support the deck of a bridge during the construction stage and may be sorted into three main types: continuous falsework, framed falsework, and self-launching scaffolding (Movable Scaffolding Systems or MSS). The case study in which this dissertation is based (Bajada del Paramo Viaduct) consists of two parallel decks (each 820 m long), two abutments (E1 and E2) and fifteen piers (P1 to P15), arranged in two end spans of 47 m and fourteen spans of 59 m. The right (case study) and left deck, builts in climbing direction, begins at abutment E2 and finishes at E1. The deck geometry is complex, with plan curve and counter-curve, variable slope in elevation view and variable transversal slope that goes with the plan curvature. For its construction, adaptations were made to MSS70 NRS 16.002 Movable Scaffolding System, with specific optimisations to meet the project requirements for a construction cycle of 8 working days. The operation performance was surveyed in site, providing data which enable to record cycle times and work volume (number of hours). The results were analysed to characterize the impact of deck geometry in cycle duration and work volume. At the end of this work, the main conclusions are drawn and some aspects for future developments in applications with movable scaffolding systems are proposed.
Description
Keywords
Viaducts and bridges Construction methods Movable scaffolding system Deck geometry Work cycle Construction costs Viadutos e pontes Métodos construtivos Cimbre autolançável Geometria de tabuleiros Ciclo de trabalhos Custos de construção
