Repository logo
 
Publication

A data mining approach to predict falls in humanoid robot locomotion

dc.contributor.authorAndré, João
dc.contributor.authorFaria, Brigida Monica
dc.contributor.authorSantos, Cristina
dc.contributor.authorReis, Luís Paulo
dc.date.accessioned2019-11-21T13:51:11Z
dc.date.available2019-11-21T13:51:11Z
dc.date.issued2016
dc.description.abstractThe inclusion of perceptual information in the operation of a dynamic robot (interacting with its environment) can provide valuable insight about its environment and increase robustness of its behaviour. In this regard, the concept of Associative Skill Memories (ASMs) has provided a great contributions regarding an effective and practical use of sensor data, under a simple and intuitive framework [2, 13]. Inspired by [2], this paper presents a data mining solution to the fall prediction problem in humanoid biped robotic locomotion. Sensor data from a large number of simulations was recorded and four data mining algorithms were applied with the aim of creating a classifier that properly identifies failure conditions. Using Support Vector Machines, on top of sensor data from a large number of simulation trials, it was possible to build an accurate and reliable offline fall predictor, achieving accuracy, sensitivity and specificity values up to 95.6%, 96.3% and 94.5%, respectively.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAndré, J., Faria, B. M., Santos, C., & Reis, L. P. (2016). A Data Mining Approach to Predict Falls in Humanoid Robot Locomotion. Em L. P. Reis, A. P. Moreira, P. U. Lima, L. Montano, & V. Muñoz-Martinez (Eds.), Robot 2015: Second Iberian Robotics Conference (pp. 273–285). Springer International Publishing. https://doi.org/10.1007/978-3-319-27149-1_22
dc.identifier.doi10.1007/978-3-319-27149-1_22pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/14889
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-319-27149-1_22pt_PT
dc.subjectRobot Locomotionpt_PT
dc.subjectData Miningpt_PT
dc.titleA data mining approach to predict falls in humanoid robot locomotionpt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage285pt_PT
oaire.citation.startPage273pt_PT
oaire.citation.titleRobot 2015: Second Iberian Robotics Conferencept_PT
oaire.citation.volume418pt_PT
person.familyNameFaria
person.givenNameBrigida Monica
person.identifierR-000-T1F
person.identifier.ciencia-id0D1F-FB5E-55E4
person.identifier.orcid0000-0003-2102-3407
person.identifier.ridC-6649-2012
person.identifier.scopus-author-id6506476517
rcaap.rightsrestrictedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication85832a40-7ef9-431a-be0c-78b45ebbae86
relation.isAuthorOfPublication.latestForDiscovery85832a40-7ef9-431a-be0c-78b45ebbae86

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CAP_BrígidaFaria_2015.pdf
Size:
568.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: