Name: | Description: | Size: | Format: | |
---|---|---|---|---|
954.83 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Atualmente, as Finanças Comportamentais assumem uma relevância crescente no âmbito da
literatura financeira e, por isso, estudar o comportamento e o processo de tomada de decisão
dos investidores é crucial para compreender as dinâmicas que ocorrem no mercado
financeiro. É de realçar que, muitas vezes, os indivíduos nas decisões financeiras de
investimento não agem racionalmente, estando muitas vezes suscetíveis a vieses e
heurísticas comportamentais que influenciam o seu processo de decisão.
Face ao exposto, através de um estudo exploratório, na presente dissertação pretende-se
investigar como as variáveis sociodemográficas (género, nível de escolaridade, idade e
rendimento líquido) influenciam as decisões de investimento financeiro, através de um efeito
mediador: “os tipos comportamentais de investidor”.
Para a realização da presente dissertação e para a obtenção dos dados para o estudo, foi
disponibilizado um questionário elaborado pela Comissão do Mercado de Valores
Mobiliários (CMVM) constituído por um conjunto de questões sociodemográficas, atitudes
face ao risco, composição da carteira e conhecimento financeiro. A partir do questionário
disponibilizado, selecionaram-se as questões mais adequadas para o estudo e,
primeiramente, através de uma Análise Fatorial Exploratória (AFE) extraíram-se cinco
componentes que representam diferentes perfis de investidores, como: “Trader Ativo”,
“Follower Influencers”, “Autoconfiante”, “Investidor em Criptoativos” e “Tradicional”, que
por sua vez são muitas vezes influenciados por atalhos mentais. Com base nas componentes
identificadas, posteriormente, procedeu-se ao Modelo de Equações Estruturais para analisar
como as características pessoais e demográficas podem afetar o perfil dos indivíduos e,
consequentemente, o impacto que esses perfis têm nas escolhas de investimento.
Importa ainda salientar que foram encontradas evidências de um efeito de mediação dos
perfis comportamentais nas decisões de investimento, que são influenciadas pelas
características sociodemográficas de cada investidor.
Currently, Behavioral Finance has become increasingly relevant within the financial literature and, therefore, studying the behavior and decision-making process of investors is crucial to understanding the dynamics that occur in the financial market. It should be noted that individuals often do not act rationally when making financial investment decisions, and are often susceptible to behavioral biases and heuristics that influence their decision-making process. In view of the above, this dissertation, through an exploratory study, aims to investigate how sociodemographic variables (gender, schooling level, age and montly income) influence financial investment decisions, through a mediating effect: “investor behavioral types”. To carry out this dissertation and obtain the data for the study, a questionnaire prepared by the Portuguese Securities Market Commission (CMVM) was made available, consisting of a set of sociodemographic questions, attitudes towards risk, portfolio composition and financial knowledge. From the questionnaire provided, the most appropriate questions for the study were selected and, firstly, through an Exploratory Factor Analysis (EFA), five components were extracted that represent the different investor profiles, such as “Active Trader”, “Follower Influencers”, “Self-Confident”, “Cryptoasset Investor” and “Traditional”, which in turn are often influenced by mental shortcuts. Based on the components identified, the Structural Equations Model (SEM) was then used to analyze how personal and demographic characteristics can affect the profile of individuals and, consequently, the impact these profiles have on investment choices. It should also be noted that evidence was found of a mediation effect of behavioral profiles on investment decisions, which are influenced by the sociodemographic characteristics of each investor.
Currently, Behavioral Finance has become increasingly relevant within the financial literature and, therefore, studying the behavior and decision-making process of investors is crucial to understanding the dynamics that occur in the financial market. It should be noted that individuals often do not act rationally when making financial investment decisions, and are often susceptible to behavioral biases and heuristics that influence their decision-making process. In view of the above, this dissertation, through an exploratory study, aims to investigate how sociodemographic variables (gender, schooling level, age and montly income) influence financial investment decisions, through a mediating effect: “investor behavioral types”. To carry out this dissertation and obtain the data for the study, a questionnaire prepared by the Portuguese Securities Market Commission (CMVM) was made available, consisting of a set of sociodemographic questions, attitudes towards risk, portfolio composition and financial knowledge. From the questionnaire provided, the most appropriate questions for the study were selected and, firstly, through an Exploratory Factor Analysis (EFA), five components were extracted that represent the different investor profiles, such as “Active Trader”, “Follower Influencers”, “Self-Confident”, “Cryptoasset Investor” and “Traditional”, which in turn are often influenced by mental shortcuts. Based on the components identified, the Structural Equations Model (SEM) was then used to analyze how personal and demographic characteristics can affect the profile of individuals and, consequently, the impact these profiles have on investment choices. It should also be noted that evidence was found of a mediation effect of behavioral profiles on investment decisions, which are influenced by the sociodemographic characteristics of each investor.
Description
Keywords
Finanças comportamentais Tipos de finanças comportamentais Tipos de Investidores comportamentais Análise fatorial exploratória Modelo de equações estruturais Behavioral finance Behavioral investor types Structural equation model Exploratory factor analysis