Logo do repositório
 
A carregar...
Miniatura
Publicação

Evolutionary Algorithms for Energy Scheduling under uncertainty considering Multiple Aggregators

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
COM_GECAD_IEEE_CEC_2021.pdf1.74 MBAdobe PDF Ver/Abrir

Autores

Lezama, Fernando
Fotouhi Ghazvini, Mohammad Ali
Vale, Zita

Orientador(es)

Resumo(s)

The ever-increasing number of electric vehicles (EVs) circulating on the roads and renewable energy production to achieve carbon footprint reduction targets has brought many challenges to the electrical grid. The increasing integration of distributed energy resources (DER) in the grid is causing severe operational challenges, such as congestion and overloading for the grid. Active management of distribution network using the smart grid (SG) technologies and artificial intelligence (AI) techniques can support the grid's operation under such situations. Implementing evolutionary computational algorithms has become possible using SG technologies. This paper proposes an optimal day-ahead resource scheduling to minimize multiple aggregators' operational costs in a SG, considering a high DER penetration. The optimization is achieved considering three metaheuristics (DE, HyDE-DF, CUMDANCauchy++). Results show that CUMDANCauchy++ and HyDE-DF present the best overall results in comparison to the standard DE.

Descrição

Palavras-chave

Aggregator Electric vehicles Energy resources management Evolutionary algorithms Smart grids Uncertainty

Contexto Educativo

Citação

Projetos de investigação

Projeto de investigaçãoVer mais
Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo