Publication
Evolutionary Algorithms for Energy Scheduling under uncertainty considering Multiple Aggregators
dc.contributor.author | Almeida, José | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Canizes, Bruno | |
dc.contributor.author | Lezama, Fernando | |
dc.contributor.author | Fotouhi Ghazvini, Mohammad Ali | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2023-03-14T09:56:06Z | |
dc.date.available | 2023-03-14T09:56:06Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The ever-increasing number of electric vehicles (EVs) circulating on the roads and renewable energy production to achieve carbon footprint reduction targets has brought many challenges to the electrical grid. The increasing integration of distributed energy resources (DER) in the grid is causing severe operational challenges, such as congestion and overloading for the grid. Active management of distribution network using the smart grid (SG) technologies and artificial intelligence (AI) techniques can support the grid's operation under such situations. Implementing evolutionary computational algorithms has become possible using SG technologies. This paper proposes an optimal day-ahead resource scheduling to minimize multiple aggregators' operational costs in a SG, considering a high DER penetration. The optimization is achieved considering three metaheuristics (DE, HyDE-DF, CUMDANCauchy++). Results show that CUMDANCauchy++ and HyDE-DF present the best overall results in comparison to the standard DE. | pt_PT |
dc.description.sponsorship | his research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017(CENERGETIC),CEECIND/02814/2017, and UIDB/000760/2020. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/CEC45853.2021.9504942 | pt_PT |
dc.identifier.isbn | 978-1-7281-8393-0 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/22468 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | POCI-01-0145-FEDER-028983 | pt_PT |
dc.relation | Not Available | |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9504942 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Aggregator | pt_PT |
dc.subject | Electric vehicles | pt_PT |
dc.subject | Energy resources management | pt_PT |
dc.subject | Evolutionary algorithms | pt_PT |
dc.subject | Smart grids | pt_PT |
dc.subject | Uncertainty | pt_PT |
dc.title | Evolutionary Algorithms for Energy Scheduling under uncertainty considering Multiple Aggregators | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Not Available | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28983%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02814%2F2017%2FCP1417%2FCT0002/PT | |
oaire.citation.conferencePlace | Kraków, Poland | pt_PT |
oaire.citation.endPage | 232 | pt_PT |
oaire.citation.startPage | 225 | pt_PT |
oaire.citation.title | 2021 IEEE Congress on Evolutionary Computation (CEC) | pt_PT |
oaire.fundingStream | 9471 - RIDTI | |
oaire.fundingStream | CEEC IND 2017 | |
person.familyName | Almeida | |
person.familyName | Soares | |
person.familyName | Canizes | |
person.familyName | Lezama | |
person.familyName | Fotouhi Ghazvini | |
person.familyName | Vale | |
person.givenName | José | |
person.givenName | João | |
person.givenName | Bruno | |
person.givenName | Fernando | |
person.givenName | Mohammad Ali | |
person.givenName | Zita | |
person.identifier | 1043580 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | C017-775D-9F55 | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | A411-F561-E922 | |
person.identifier.ciencia-id | E31F-56D6-1E0F | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0002-9504-0501 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0002-9808-5537 | |
person.identifier.orcid | 0000-0001-8638-8373 | |
person.identifier.orcid | 0000-0002-0638-7221 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | I-3492-2017 | |
person.identifier.rid | A-6945-2017 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 35408699300 | |
person.identifier.scopus-author-id | 36810077500 | |
person.identifier.scopus-author-id | 54782572900 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 119ecfd0-1484-4157-911c-7632f2fc56c0 | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | 7ea215ea-79d5-42be-a870-a0c8b23cf556 | |
relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isAuthorOfPublication | b620503a-2c96-4c59-9147-c7a439afbe88 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | b620503a-2c96-4c59-9147-c7a439afbe88 | |
relation.isProjectOfPublication | 6615f0c1-4abc-48fc-ac0a-fce560b02403 | |
relation.isProjectOfPublication | 7f9ebad6-9f7d-4225-8694-48de17ea8b51 | |
relation.isProjectOfPublication.latestForDiscovery | 6615f0c1-4abc-48fc-ac0a-fce560b02403 |