Repository logo
 
Publication

Evolutionary Algorithms for Energy Scheduling under uncertainty considering Multiple Aggregators

dc.contributor.authorAlmeida, José
dc.contributor.authorSoares, João
dc.contributor.authorCanizes, Bruno
dc.contributor.authorLezama, Fernando
dc.contributor.authorFotouhi Ghazvini, Mohammad Ali
dc.contributor.authorVale, Zita
dc.date.accessioned2023-03-14T09:56:06Z
dc.date.available2023-03-14T09:56:06Z
dc.date.issued2021
dc.description.abstractThe ever-increasing number of electric vehicles (EVs) circulating on the roads and renewable energy production to achieve carbon footprint reduction targets has brought many challenges to the electrical grid. The increasing integration of distributed energy resources (DER) in the grid is causing severe operational challenges, such as congestion and overloading for the grid. Active management of distribution network using the smart grid (SG) technologies and artificial intelligence (AI) techniques can support the grid's operation under such situations. Implementing evolutionary computational algorithms has become possible using SG technologies. This paper proposes an optimal day-ahead resource scheduling to minimize multiple aggregators' operational costs in a SG, considering a high DER penetration. The optimization is achieved considering three metaheuristics (DE, HyDE-DF, CUMDANCauchy++). Results show that CUMDANCauchy++ and HyDE-DF present the best overall results in comparison to the standard DE.pt_PT
dc.description.sponsorshiphis research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017(CENERGETIC),CEECIND/02814/2017, and UIDB/000760/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/CEC45853.2021.9504942pt_PT
dc.identifier.isbn978-1-7281-8393-0
dc.identifier.urihttp://hdl.handle.net/10400.22/22468
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationPOCI-01-0145-FEDER-028983pt_PT
dc.relationNot Available
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9504942pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAggregatorpt_PT
dc.subjectElectric vehiclespt_PT
dc.subjectEnergy resources managementpt_PT
dc.subjectEvolutionary algorithmspt_PT
dc.subjectSmart gridspt_PT
dc.subjectUncertaintypt_PT
dc.titleEvolutionary Algorithms for Energy Scheduling under uncertainty considering Multiple Aggregatorspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleNot Available
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28983%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02814%2F2017%2FCP1417%2FCT0002/PT
oaire.citation.conferencePlaceKraków, Polandpt_PT
oaire.citation.endPage232pt_PT
oaire.citation.startPage225pt_PT
oaire.citation.title2021 IEEE Congress on Evolutionary Computation (CEC)pt_PT
oaire.fundingStream9471 - RIDTI
oaire.fundingStreamCEEC IND 2017
person.familyNameAlmeida
person.familyNameSoares
person.familyNameCanizes
person.familyNameLezama
person.familyNameFotouhi Ghazvini
person.familyNameVale
person.givenNameJosé
person.givenNameJoão
person.givenNameBruno
person.givenNameFernando
person.givenNameMohammad Ali
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-idC017-775D-9F55
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-idA411-F561-E922
person.identifier.ciencia-idE31F-56D6-1E0F
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-9504-0501
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-9808-5537
person.identifier.orcid0000-0001-8638-8373
person.identifier.orcid0000-0002-0638-7221
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridI-3492-2017
person.identifier.ridA-6945-2017
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id35408699300
person.identifier.scopus-author-id36810077500
person.identifier.scopus-author-id54782572900
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication119ecfd0-1484-4157-911c-7632f2fc56c0
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublication7ea215ea-79d5-42be-a870-a0c8b23cf556
relation.isAuthorOfPublication6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isAuthorOfPublicationb620503a-2c96-4c59-9147-c7a439afbe88
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryb620503a-2c96-4c59-9147-c7a439afbe88
relation.isProjectOfPublication6615f0c1-4abc-48fc-ac0a-fce560b02403
relation.isProjectOfPublication7f9ebad6-9f7d-4225-8694-48de17ea8b51
relation.isProjectOfPublication.latestForDiscovery6615f0c1-4abc-48fc-ac0a-fce560b02403

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_IEEE_CEC_2021.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: