| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 6.45 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Este trabalho aborda as estruturas celulares, o seu fabrico utilizando impressão 3D e a sua
análise utilizando métodos sem malha. Os métodos numéricos, como o Método de Elementos
Finitos (FEM), são ferramentas matemáticas essenciais para resolver problemas complexos em
engenharia. Alternativamente, métodos sem malha como o “Radial Point Interpolation
Method” (RPIM) e o “Natural Neighbour Radial Point Interpolation Method” (NNRPIM)
oferecem maior flexibilidade na simulação de deformações e fraturas, sendo independentes de
uma malha fixa.
Estruturas celulares, inspiradas na natureza, apresentam propriedades únicas que permitem a
criação de materiais leves com propriedades mecânicas superiores, sendo aplicadas nas mais
diversas áreas da engenharia. A análise destas estruturas pode ser macromecânica ou
micromecânica, sendo a abordagem macromecânica simplificada pela consideração do material
como homogéneo. A homogeneização das propriedades das espumas pode ser obtida
numericamente através dos métodos RPIM e NNRPIM.
A popularização da impressão 3D revolucionou o projeto e fabrico, permitindo a criação de
geometrias complexas com alta precisão e eficiência em termos de peso. A combinação da
fabricação aditiva, estruturas celulares e materiais poliméricos de baixa temperatura de fusão
possibilita a produção de componentes leves e eficientes, atendendo às necessidades de várias
indústrias.
Neste trabalho foi obtido um exemplo de uma peça constituída por estruturas celulares
utilizando a impressão 3D, sendo que a célula unitária foi homogeneizada numericamente
utilizando os métodos RPIM e NNRPIM com resultados satisfatórios. Foi também feita uma
simulação da barra de forma a analisar o comportamento num ensaio à flexão e de viga
encastrada com a carga aplicada na ponta.
This work deals with cellular structures, their manufacture using 3D printing and their analysis using meshless methods. Numerical methods, such as the Finite Element Method (FEM), are essential mathematical tools for solving complex engineering problems. Alternatively, meshless methods such as the Radial Point Interpolation Method (RPIM) and the Natural Neighbor Radial Point Interpolation Method (NNRPIM) offer greater flexibility in simulating deformations and fractures, and are independent of a fixed mesh. Cellular structures, inspired by nature, have unique properties that allow the creation of lightweight materials with superior mechanical properties, and are applied in a wide range of engineering areas. The analysis of these structures can be macromechanical or micromechanical, the macromechanical approach being simplified by considering the material as homogeneous. The homogenization of foam properties can be obtained numerically using the RPIM and NNRPIM methods. The popularization of 3D printing has revolutionized design and manufacturing, enabling the creation of complex geometries with high precision and weight efficiency. The combination of additive manufacturing, cell structures and low-melting-temperature polymeric materials makes it possible to produce lightweight and efficient components, meeting the needs of various industries. An example of a part made up of cellular structures was obtained using 3D printing, and the unit cell was numerically homogenized using the RPIM and NNRPIM methods with satisfactory results. A simulation of the bar was also carried out in order to analyze its behavior in a bending and embedded beam test with the load applied at the tip.
This work deals with cellular structures, their manufacture using 3D printing and their analysis using meshless methods. Numerical methods, such as the Finite Element Method (FEM), are essential mathematical tools for solving complex engineering problems. Alternatively, meshless methods such as the Radial Point Interpolation Method (RPIM) and the Natural Neighbor Radial Point Interpolation Method (NNRPIM) offer greater flexibility in simulating deformations and fractures, and are independent of a fixed mesh. Cellular structures, inspired by nature, have unique properties that allow the creation of lightweight materials with superior mechanical properties, and are applied in a wide range of engineering areas. The analysis of these structures can be macromechanical or micromechanical, the macromechanical approach being simplified by considering the material as homogeneous. The homogenization of foam properties can be obtained numerically using the RPIM and NNRPIM methods. The popularization of 3D printing has revolutionized design and manufacturing, enabling the creation of complex geometries with high precision and weight efficiency. The combination of additive manufacturing, cell structures and low-melting-temperature polymeric materials makes it possible to produce lightweight and efficient components, meeting the needs of various industries. An example of a part made up of cellular structures was obtained using 3D printing, and the unit cell was numerically homogenized using the RPIM and NNRPIM methods with satisfactory results. A simulation of the bar was also carried out in order to analyze its behavior in a bending and embedded beam test with the load applied at the tip.
Description
Keywords
Cellular structures 3D printing Meshless methods Homogenization Estruturas celulares Homogeneização Métodos sem malha Impressão 3D
