Repository logo
 
Loading...
Thumbnail Image
Publication

Third-generation electrochemical biosensor based on nitric oxide reductase immobilized in a multiwalled carbon nanotubes/1-n-butyl-3-methylimidazolium tetrafluoroborate nanocomposite for nitric oxide detection

Use this identifier to reference this record.
Name:Description:Size:Format: 
ART_GRAQ_DELERUE_2019_17.pdf472.37 KBAdobe PDF Download

Advisor(s)

Abstract(s)

Nitric oxide (NO) has a crucial role in signaling and cellular physiology in humans. Herein, a novel third-generation biosensor based on the Marinobacter hydrocarbonoclasticus metalloenzyme (nitric oxide reductase (NOR)), responsible for the NO reduction in the denitrifying processes, was developed through the direct adsorption of a new nanocomposite (multiwalled carbon nanotubes (MWCNTs)/1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4)/NOR) onto a pyrolytic graphite electrode (PGE) surface. The NOR direct electron transfer behavior (formal potential of -0.255 ± 0.003 V vs. Ag/AgCl) and electrocatalysis towards NO reduction (−0.68 ± 0.03 V vs. Ag/AgCl) of the PGE/[MWCNTs/BMIMBF4/NOR] biosensor were investigated in phosphate buffer at pH 6.0. Large enzyme loading (2.04 × 10−10 mol/cm2), acceptable electron transfer rate between NOR and the PGE surface (ks = 0.35 s-1), and high affinity for NO (Km = 2.17 μmol L-1) were observed with this biosensor composition. A linear response to NO concentration (0.23–4.76 μmol L-1) was perceived with high sensitivity (0.429 μA/μmolL-1), a detection limit of 0.07 μmol L-1, appropriate repeatability (9.1% relative standard deviations (RSD)), reproducibility (6.0–11% RSD) and 80–102% recoveries. The biosensor was stable during 1 month retaining 79–116% of its initial response. These data confirmed that NOR incorporated in the MWCNTs/BMIMBF4 nanocomposite can efficiently maintain its bioactivity paving a new and effective way for NO biosensing.

Description

Keywords

Direct electron transfer Enzymatic biosensor Nitric oxide reductase Nitric oxide Multiwalled carbon nanotubes Room temperature ionic liquid

Citation

Research Projects

Organizational Units

Journal Issue