Repository logo
 
Publication

Analysis of diffusion process in fractured reservoirs using fractional derivative approach

dc.contributor.authorRazminia, Kambiz
dc.contributor.authorRazminia, Abolhassan
dc.contributor.authorMachado, J. A. Tenreiro
dc.date.accessioned2015-01-27T11:39:52Z
dc.date.available2015-01-27T11:39:52Z
dc.date.issued2014
dc.description.abstractThe fractal geometry is used to model of a naturally fractured reservoir and the concept of fractional derivative is applied to the diffusion equation to incorporate the history of fluid flow in naturally fractured reservoirs. The resulting fractally fractional diffusion (FFD) equation is solved analytically in the Laplace space for three outer boundary conditions. The analytical solutions are used to analyze the response of a naturally fractured reservoir considering the anomalous behavior of oil production. Several synthetic examples are provided to illustrate the methodology proposed in this work and to explain the diffusion process in fractally fractured systems.por
dc.identifier.doi10.1016/j.cnsns.2014.01.025
dc.identifier.issn1007-5704
dc.identifier.urihttp://hdl.handle.net/10400.22/5483
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.relation.ispartofseriesCommunications in Nonlinear Science and Numerical Simulation;Vol. 19, Issue 9
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1007570414000501por
dc.subjectFractal geometrypor
dc.subjectNaturally fractured reservoirpor
dc.subjectFractional derivativepor
dc.subjectFFD modelpor
dc.titleAnalysis of diffusion process in fractured reservoirs using fractional derivative approachpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage3170por
oaire.citation.startPage3161por
oaire.citation.titleCommunications in Nonlinear Science and Numerical Simulationpor
person.familyNameTenreiro Machado
person.givenNameJ. A.
person.identifier.ciencia-id7A18-4935-5B29
person.identifier.orcid0000-0003-4274-4879
person.identifier.ridM-2173-2013
person.identifier.scopus-author-id55989030100
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication82cd5c17-07b6-492b-b3e3-ecebdad1254f
relation.isAuthorOfPublication.latestForDiscovery82cd5c17-07b6-492b-b3e3-ecebdad1254f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART5_JTM_DEE_2014.pdf
Size:
841.58 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: