Name: | Description: | Size: | Format: | |
---|---|---|---|---|
8.81 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Additive manufacturing processes use a wide range of technologies and are increasingly used in several industries, abandoning the stigma that associates them exclusively with the manufacture of prototypes. Due to the advantages presented by this kind of process, such as the absence of moulds and a greater design freedom, additive manufacturing techniques have been incorporated in some industrial sectors. These techniques of additive deposition can be divided into two main categories, namely the Powder Bed System (PBS) and the Direct Energy Deposition (DED). The PBS have been mostly implemented commercially, however present some disadvantages when compared to the DED, such as the limitation of the build volumes, lower production rates and greater difficulty in producing multi-material parts. A new additive manufacturing technique called 3D Plasma Metal Deposition (3DPMD), which is part of the DED techniques, consists in the combination of Plasma Transferred Arc (PTA) welding technology with deposition by means of a robotic arm. This technology has been implemented due to its versatility, being applied for example in industries such as repair and coating of metal parts, or even in the mould industry. In this dissertation, this additive manufacturing process, the 3DPMD, was used as an object of study in the possibility of manufacturing metallic parts, as well as repair processes. In this way, a study of the influence of various parameters of material addition in the process was performed, such as current intensity, speed and deposition rates, and then a qualitative analysis of the material produced was performed. Using a PTA material deposition equipment, combined with a CNC equipment using CAM routines, process parameters were established according to the full factorial Design of Experiments (DoE). Thus, deposited beads were produced with the different parameters and submitted to hardness and geometric analysis tests, to evaluate the optimum process conditions. The ANOVA test allowed concluding the inexistence of correlation between factors, while Spearmen's correlation coefficient allowed knowing the influence of each factor on geometry and hardness. Based on the results obtained, it was possible to produce a piece by adding layers of metallic cord, creating a test cube, which was also submitted to Microhardness tests.
Os processos de fabricação aditiva recorrem a uma vasta gama de tecnologias, sendo cada vez mais utilizados em diversas indústrias, abandonando o estigma que os associa exclusivamente ao fabrico de protótipos. Pelas vantagens apresentadas por este tipo de processo, como por exemplo a inexistência de moldes e uma maior liberdade no projeto de peças, as técnicas de fabricação aditiva têm vindo a ser incorporadas em alguns setores industriais. Estas técnicas de deposição aditiva, podem dividir-se em duas principais categorias, nomeadamente os de Powder Bed System (PBS) e os Direct Energy Deposition (DED). Os PBS têm vindo a ser maioritariamente implementados comercialmente, contudo com algumas desvantagens quando comparados com os DED, como por exemplo a limitação do volume das peças a fabricar, menores cadências de produção e a maior dificuldade em produzir peças multimaterial. Uma nova técnica de fabricação aditiva denominada de 3D Plasma Metal Deposition (3DPMD), enquadrando-se nas técnicas DED, consiste na combinação da tecnologia de soldadura por Arco de Plasma Transferido (PTA) com a deposição através de um braço robótico. Esta tecnologia tem vindo a ser implementada pela versatilidade que apresenta, sendo aplicada por exemplo em indústrias como a de reparação e revestimento de peças metálicas, ou mesmo na indústria de moldes. Nesta dissertação recorreu-se a este processo de fabricação aditiva, o 3DPMD, como objeto de estudo na possibilidade de fabricação de peças metálicas, assim como processos de reparação. Desta forma, realizou-se um estudo da influência de diversos parâmetros de adição de material no processo, como por exemplo a intensidade de corrente, a velocidade e taxas de deposição, e seguidamente foi realizada uma análise qualitativa do material produzido. Utilizando-se um equipamento de deposição de material PTA, combinado com um equipamento CNC utilizando técnicas CAM, foram estabelecidos parâmetros de processo de acordo com o planeamento de experiências de fatorial completo (DoE). Assim, foram produzidos cordões com os diferentes parâmetros e submetidos a ensaios de análise de dureza e geométrica, como forma de avaliar as condições ótimas de processo. O teste ANOVA permitiu concluir a inexistência de correlação entre fatores, enquanto o coeficiente de correlação do Spearmen permitiu conhecer a influência de cada fator na geometria e na dureza. Com base nos resultados obtidos, foi possível produzir-se uma peça por adição de camadas de cordão metálico, criando um cubo de teste, que foi também submetido a ensaios de Microdureza.
Os processos de fabricação aditiva recorrem a uma vasta gama de tecnologias, sendo cada vez mais utilizados em diversas indústrias, abandonando o estigma que os associa exclusivamente ao fabrico de protótipos. Pelas vantagens apresentadas por este tipo de processo, como por exemplo a inexistência de moldes e uma maior liberdade no projeto de peças, as técnicas de fabricação aditiva têm vindo a ser incorporadas em alguns setores industriais. Estas técnicas de deposição aditiva, podem dividir-se em duas principais categorias, nomeadamente os de Powder Bed System (PBS) e os Direct Energy Deposition (DED). Os PBS têm vindo a ser maioritariamente implementados comercialmente, contudo com algumas desvantagens quando comparados com os DED, como por exemplo a limitação do volume das peças a fabricar, menores cadências de produção e a maior dificuldade em produzir peças multimaterial. Uma nova técnica de fabricação aditiva denominada de 3D Plasma Metal Deposition (3DPMD), enquadrando-se nas técnicas DED, consiste na combinação da tecnologia de soldadura por Arco de Plasma Transferido (PTA) com a deposição através de um braço robótico. Esta tecnologia tem vindo a ser implementada pela versatilidade que apresenta, sendo aplicada por exemplo em indústrias como a de reparação e revestimento de peças metálicas, ou mesmo na indústria de moldes. Nesta dissertação recorreu-se a este processo de fabricação aditiva, o 3DPMD, como objeto de estudo na possibilidade de fabricação de peças metálicas, assim como processos de reparação. Desta forma, realizou-se um estudo da influência de diversos parâmetros de adição de material no processo, como por exemplo a intensidade de corrente, a velocidade e taxas de deposição, e seguidamente foi realizada uma análise qualitativa do material produzido. Utilizando-se um equipamento de deposição de material PTA, combinado com um equipamento CNC utilizando técnicas CAM, foram estabelecidos parâmetros de processo de acordo com o planeamento de experiências de fatorial completo (DoE). Assim, foram produzidos cordões com os diferentes parâmetros e submetidos a ensaios de análise de dureza e geométrica, como forma de avaliar as condições ótimas de processo. O teste ANOVA permitiu concluir a inexistência de correlação entre fatores, enquanto o coeficiente de correlação do Spearmen permitiu conhecer a influência de cada fator na geometria e na dureza. Com base nos resultados obtidos, foi possível produzir-se uma peça por adição de camadas de cordão metálico, criando um cubo de teste, que foi também submetido a ensaios de Microdureza.
Description
Keywords
3DPMD Eutroloy 16604 Additive Manufacturing Plasma Transferred Arc Powder Deposition Fabricação Aditiva Arco de Plasma Transferido Deposição de Pó