Publication
Strategic Particle Swarm Inertia Selection for Electricity Markets Participation Portfolio Optimization
| dc.contributor.author | Faia, Ricardo | |
| dc.contributor.author | Pinto, Tiago | |
| dc.contributor.author | Vale, Zita | |
| dc.contributor.author | Corchado, Juan Manuel | |
| dc.date.accessioned | 2021-02-24T12:36:21Z | |
| dc.date.available | 2021-02-24T12:36:21Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | The portfolio optimization is a well-known problem in the areas of economy and finance. This problem has also become increasingly important in electrical power systems, particularly in the area of electricity markets, mostly due to the growing number of alternative/complementary market types that are being introduced to deal with important issues, such as the massive integration of renewable energy sources in power systems. The optimization of electricity market players’ participation portfolio comprises significant time constraints, which cannot be satisfied by the use of deterministic techniques. For this reason, meta-heuristic solutions are used, such as particle swarm optimization. The inertia is one of the most important parameter in this method, and it is the main focus of this paper. This paper studies 18 popular inertia calculation strategies, by comparing their performance in the portfolio optimization problem. A strategic methodology for the automatic selection of the best inertia calculation method for the needs of each optimization is also proposed. Results show that the proposed approach is able to automatically adapt the inertia parameter according to the needs in each execution. | pt_PT |
| dc.description.sponsorship | This work has been developed in the scope of the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 703689 (project ADAPT) and grant agreement No 641794 (project DREAM-GO); and has also been supported by the CONTEST project – SAICT-POL/23575/2016. Ricardo Faia is supported by FCT Funds through SFRH/BD/133086/2017 (PhD scholarship). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.doi | 10.1080/08839514.2018.1506971 | pt_PT |
| dc.identifier.uri | http://hdl.handle.net/10400.22/17117 | |
| dc.language.iso | eng | pt_PT |
| dc.publisher | Taylor and Francis | pt_PT |
| dc.relation | POL/23575/2016 | pt_PT |
| dc.relation | Enabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach | |
| dc.relation | Apoio à decisão para participação em mercados de energia elétrica | |
| dc.relation | Adaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions | |
| dc.relation.publisherversion | https://www.tandfonline.com/doi/full/10.1080/08839514.2018.1506971 | pt_PT |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
| dc.subject | Artificial Intelligence | pt_PT |
| dc.subject | Electricity Market | pt_PT |
| dc.subject | Inertia Parameter | pt_PT |
| dc.subject | Particle Swarm Optimization | pt_PT |
| dc.subject | Portfolio Optimization | pt_PT |
| dc.title | Strategic Particle Swarm Inertia Selection for Electricity Markets Participation Portfolio Optimization | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Enabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach | |
| oaire.awardTitle | Apoio à decisão para participação em mercados de energia elétrica | |
| oaire.awardTitle | Adaptive Decision support for Agents negotiation in electricity market and smart grid Power Transactions | |
| oaire.awardURI | info:eu-repo/grantAgreement/EC/H2020/641794/EU | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F133086%2F2017/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/EC/H2020/703689/EU | |
| oaire.citation.endPage | 767 | pt_PT |
| oaire.citation.issue | 7-8 | pt_PT |
| oaire.citation.startPage | 745 | pt_PT |
| oaire.citation.title | Applied Artificial Intelligence | pt_PT |
| oaire.citation.volume | 32 | pt_PT |
| oaire.fundingStream | H2020 | |
| oaire.fundingStream | H2020 | |
| person.familyName | Faia | |
| person.familyName | Pinto | |
| person.familyName | Vale | |
| person.givenName | Ricardo Francisco Marcos | |
| person.givenName | Tiago | |
| person.givenName | Zita | |
| person.identifier | 78FtZwIAAAAJ | |
| person.identifier | R-000-T7J | |
| person.identifier | 632184 | |
| person.identifier.ciencia-id | 9B12-19F6-D6C7 | |
| person.identifier.ciencia-id | 2414-9B03-C4BB | |
| person.identifier.ciencia-id | 721B-B0EB-7141 | |
| person.identifier.orcid | 0000-0002-1053-7720 | |
| person.identifier.orcid | 0000-0001-8248-080X | |
| person.identifier.orcid | 0000-0002-4560-9544 | |
| person.identifier.rid | T-2245-2018 | |
| person.identifier.rid | A-5824-2012 | |
| person.identifier.scopus-author-id | 35219107600 | |
| person.identifier.scopus-author-id | 7004115775 | |
| project.funder.identifier | http://doi.org/10.13039/501100008530 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100008530 | |
| project.funder.name | European Commission | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | European Commission | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isAuthorOfPublication | 5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce | |
| relation.isAuthorOfPublication | 8d58ddc0-1023-47c0-a005-129d412ce98d | |
| relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
| relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
| relation.isProjectOfPublication | 4a092e97-cc2f-4f57-8d3c-cf1709963516 | |
| relation.isProjectOfPublication | 5174c937-e0b3-4cec-a768-c1fe1d75165e | |
| relation.isProjectOfPublication | 0659ce55-4ace-4540-b5e4-06dea6a17510 | |
| relation.isProjectOfPublication.latestForDiscovery | 5174c937-e0b3-4cec-a768-c1fe1d75165e |
Files
Original bundle
1 - 1 of 1
