Repository logo
 
Loading...
Project Logo
Research Project

Seed coating with microbial inoculants: a path to sustainable agriculture

Authors

Publications

Improved grain yield of cowpea (Vigna unguiculata) under water deficit after inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis
Publication . Oliveira, Rui S.; Carvalho, Patricia; Marques, Guilhermina; Ferreira, Luís; Pereira, Sandra; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F.; Vosátka, Miroslav; Freitas, Helena
Cowpea (Vigna unguiculata (L.) Walp.), a plant broadly cultivated for human consumption and animal feed, is among the most nutritious grain legumes. Most of the areas where cowpea is grown are drought-prone, and there is a need to address this issue, with water scarcity becoming a major concern in agriculture. Cowpea is known to form mutualistic associations with nitrogen-fixing (NF) bacteria and arbuscular mycorrhizal (AM) fungi. These beneficial soil microorganisms have the capacity to benefit plants by reducing the effects of environmental stresses, including drought. Our aim was to study the effect of inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis on the growth and grain yield of cowpea under water-deficit conditions. Under moderate water deficit, grain yield was increased by 63%, 55% and 84% in plants inoculated with B. elkanii, R. irregularis and B. elkanii   R. irregularis, respectively. Under severe water deficit, inoculation with B. elkanii and B. elkanii   R. irregularis resulted in grain-yield enhancement of 45% and 42%, respectively. The use of cowpea inoculated with NF bacteria and AM fungi has great potential for sustainable agricultural production under drought conditions.
Growth and nutrition of cowpea (Vigna unguiculata) under water deficit as influenced by microbial inoculation via seed coating
Publication . Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena; Oliveira, Rui S.
Drought can drastically reduce cowpea [Vigna unguiculata (L.) Walp.] biomass and grain yield. The application of plant growth‐promoting rhizobacteria and arbuscular mycorrhizal fungi can confer resistance to plants and reduce the effects of environmental stresses, including drought. Seed coating is a technique which allows the application of minor amounts of microbial inocula. Main effects of the factors inoculation and water regime showed that: severe or moderate water deficit had a general negative impact on cowpea plants; total biomass production, seed weight and seed yield were enhanced in plants inoculated with P. putida; inoculation of R. irregularis significantly increased nitrogen (N) and phosphorus (P) shoot concentrations; and R. irregularis enhanced both chlorophyll b and carotenoids contents, particularly under severe water deficit. Plants inoculated with P. putida + R. irregularis had an increase in shoot P concentration of 85% and 57%, under moderate and severe water deficit, respectively. Singly inoculated P. putida improved potassium shoot concentration by 25% under moderate water deficit. Overall, in terms of agricultural productivity the inoculation of P. putida under water deficit might be promising. Seed coating has the potential to be used as a large‐scale delivery system of beneficial microbial inoculants.
Using microbial seed coating for improving cowpea productivity under a low‐input agricultural system
Publication . Rocha, Inês; Souza‐Alonso, Pablo; Pereira, Graça; Ma, Ying; Vosátka, Miroslav; Freitas, Helena; Oliveira, Rui S.
BACKGROUND Plant‐growth‐promoting rhizobacteria (PGPR) and arbuscular mycorrhizal (AM) fungi have the ability to enhance the growth, fitness, and quality of various agricultural crops, including cowpea. However, field trials confirming the benefits of microbes in large‐scale applications using economically viable and efficient inoculation methods are still scarce. Microbial seed coating has a great potential for large‐scale agriculture through the application of reduced amounts of PGPR and AM fungi inocula. Thus, in this study, the impact of seed coating with PGPR, Pseudomonas libanensis TR1 and AM fungus, Rhizophagus irregularis (single or multiple isolates) on grain yield and nutrient content of cowpea under low‐input field conditions was evaluated. RESULTS Seed coating with P. libanensis + multiple isolates of R. irregularis (coatPMR) resulted in significant increases in shoot dry weight (76%), and in the number of pods and seeds per plant (52% and 56%, respectively) and grain yield (56%), when compared with non‐inoculated control plants. However, seed coating with P. libanensis + R. irregularis single‐isolate (coatPR) did not influence cowpea grain yield. Grain lipid content was significantly higher (25%) in coatPMR plants in comparison with control. Higher soil organic matter and lower pH were observed in the coatPMR treatment. CONCLUSIONS Our findings indicate that cowpea field productivity can be improved by seed coating with PGPR and multiple AM fungal isolates under low‐input agricultural systems. © 2019 Society of Chemical Industry
Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions
Publication . Oliveira, Rui S.; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena
Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit.
Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops
Publication . Rocha, Inês; Ma, Ying; Souza-Alonso, Pablo; Vosátka, Miroslav; Freitas, Helena; Oliveira, Rui S.
Plant beneficial microbes (PBMs), such as plant growth-promoting bacteria, rhizobia, arbuscular mycorrhizal fungi, and Trichoderma, can reduce the use of agrochemicals and increase plant yield, nutrition, and tolerance to biotic-abiotic stresses. Yet, large-scale applications of PBM have been hampered by the high amounts of inoculum per plant or per cultivation area needed for successful colonization and consequently the economic feasibility. Seed coating, a process that consists in covering seeds with low amounts of exogenous materials, is gaining attention as an efficient delivery system for PBM. Microbial seed coating comprises the use of a binder, in some cases a filler, mixed with inocula, and can be done using simple mixing equipment (e.g., cement mixer) or more specialized/sophisticated apparatus (e.g., fluidized bed). Binders/fillers can be used to extend microbial survival. The most reported types of seed coating are seed dressing, film coating, and pelleting. Tested in more than 50 plant species with seeds of different dimensions, forms, textures, and germination types (e.g., cereals, vegetables, fruits, pulses, and other legumes), seed coating has been studied using various species of plant growth-promoting bacteria, rhizobia, Trichoderma, and to a lesser extent mycorrhizal fungi. Most of the studies regarding PBM applied via seed coating are aimed at promoting crop growth, yield, and crop protection against pathogens. Studies have shown that coating seeds with PBM can assist crops in improving seedling establishment and germination or achieving high yields and food quality, under reduced chemical fertilization. The right combination of biological control agents applied via seed coating can be a powerful tool against a wide number of diseases and pathogens. Less frequently, studies report seed coating being used for adaptation and protection of crops under abiotic stresses. Notwithstanding the promising results, there are still challenges mainly related with the scaling up from the laboratory to the field and proper formulation, including efficient microbial combinations and coating materials that can result in extended shelf-life of both seeds and coated PBM. These limitations need to be addressed and overcome in order to allow a wider use of seed coating as a cost-effective delivery method for PBM in sustainable agricultural systems.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

SFRH/BD/100484/2014

ID