Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Molecularly imprinting for ca 15-3 protein detection: a promising biosensor for advanced point-of-care applications
Publication . Oliveira, Daniela; Barcelay, Yonny Romaguera; Moreira, Felismina
(Introduction) Cancer is a public health problem worldwide. Early detection is crucial to improve survival rates [1]. Non-invasive, fast rapid, and low-cost diagnostic methods are urgently needed. Biosensors are a promising alternative to traditional methods such as ELISA, enabling point-ofcare (PoC) analyses. These require biorecognition elements with high selectivity and stability to meet current requirements in PoC diagnostics [2]. This work aims to create an electrochemical biosensor that can detect CA 15-3 with high sensitivity and selectivity. The biosensor consists of molecularly imprinted polymer (MIP) as the biorecognition element, and it is assembled via electrochemical polymerization of a mixture of 3-acrylamidopropyl trimethylammonium chloride (AMPTMA) in the presence of CA 15-3. Electrochemical techniques such as cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) were employed to evaluate the biosensor's electrochemical performance during its optimization and construction. CA 15-3 was successfully detected in a wide concentration range from 0.001 to 100 U mL-1 in just 20 minutes, with an R2 of 0.994. The MIP sensor showed minimal interference with other cancer proteins. This device offers rapid, sensitive, and cost-effective detection of CA 15-3, making it suitable for clinical PoC application.
Transdermal electrochemical sensing: Combining microneedles with molecularly imprinted polymers for point-of-care testing
Publication . Oliveira, Daniela; Correia, Bárbara P.; Sharma, Sanjiv; Moreira, Felismina T.C.
Biomarkers from interstitial skin fluid (ISF) complement conventional biofluids for point-of-care testing and real-time monitoring. In this study, we propose a new approach that combines microneedle technology with molecularly imprinted polymers to improve transdermal electrochemical sensing. The molecularly imprinted polymer, which acts like a plastic antibody, is easy to synthesis and scalable, offering a low detection limit and rapid measurement (20 minutes). It detects IL -6, a proinflammatory cytokine associated with several clinical conditions, including neurological disease and pneumonia caused by SARS-CoV-2. The transdermal sensors successfully identified IL -6 in simulated skin ISF at very low concentrations (1 pg/mL). This breakthrough enables affordable and bloodless testing, facilitating access to point-of-care testing worldwide. The integration of molecularly imprinted polymers and microneedle arrays is very promising for efficient transdermal electrochemical sensing that could find application in various clinical scenarios.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

POR_NORTE

Funding Award Number

SFRH/BD/137832/2018

ID